

Bethesda, MD 20084-5000

DTRC-SME-91/34 July 1991

Ship Materials Engineering Department Research and Development Report

Analysis of Strain Dependent Damping in Materials via Modeling of Material Point Hysteresis

by E.J. Graesser* C.R. Wong

*ASEE/ONT Postdoctoral Fellow

91-10445

Approved for public release; distribution unlimited.

MAJOR DTRC TECHNICAL COMPONENTS

- CODE 011 DIRECTOR OF TECHNOLOGY, PLANS AND ASSESSMENT
 - 12 SHIP SYSTEMS INTEGRATION DEPARTMENT
 - 14 SHIP ELECTROMAGNETIC SIGNATURES DEPARTMENT
 - 15 SHIP HYDROMECHANICS DEPARTMENT
 - 16 AVIATION DEPARTMENT
 - 17 SHIP STRUCTURES AND PROTECTION DEPARTMENT
 - 18 COMPUTATION, MATHEMATICS & LOGISTICS DEPARTMENT
 - 19 SHIP ACOUSTICS DEPARTMENT
 - 27 PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT
 - 28 SHIP MATERIALS ENGINEERING DEPARTMENT

DTRC ISSUES THREE TYPES OF REPORTS:

- 1. **DTRC reports, a formal series,** contain information of permanent technical value. They carry a consecutive numerical identification regardless of their classification or the originating department.
- 2. **Departmental reports, a semiformal series,** contain information of a preliminary, temporary, or proprietary nature or of limited interest or significance. They carry a departmental alphanumerical identification.
- 3. **Technical memoranda, an informal series,** contain technical documentation of limited use and interest. They are primarily working papers intended for internal use. They carry an identifying number which indicates their type and the numerical code of the originating department. Any distribution outside DTRC must be approved by the head of the originating department on a case-by-case basis.

David Taylor Research Center

Bethesda, MD 20084-5000

DTRC-SME-91/34 July 1991
Ship Materials Engineering Department
Research & Development Report

Analysis of Strain Dependent Damping in Materials via Modeling of Material Point Hysteresis

by E.J. Graesser* C.R. Wong

*ASEE/ONT Postdoctoral Fellow

CONTENTS

ADMINISTRATIVE INFORMATION		1
INTRODUCTION		1
ANALYSIS		4
SUMMARY	•••••••	17
REFERENCES		27
APPENDIX A	***************************************	29
APPENDIX B	***************************************	33
APPENDIX C		37
APPENDIX D	***************************************	41
APPENDIX E	***************************************	46
APPENDIX F	***************************************	51
APPENDIX G		57
APPENDIX H	••••••	63
FIGURES 1. Strain Amplitude Dependent Damping in Fe-Cr Based High Damping Alloys		
	Indinear Damping Materials	
	Separate Bending and Torsion Tests	
	Axial Loading	
	Shear Loading	
	r Pure Axial and Shear Loading.	
	Peak Axial and Shear Strains	
	Peak Equivalent Strain	
	and Shear vs. Peak Equivalent Strain	
10. Schematic Drawing of Strain Profile in 1	Bending and Torsion Geometries	24
11. Amplitude Dependent Damping in Bend	ling and Torsion vs. Peak Surface Strain	25
12. Amplitude Dependent Damping in Bend	ling and Torsion vs. Peak Equivalent Strain	25
	Accession For	
	NTIS GRA&I 🗹 DTIC TAB	
	Unaunounced	
	Justification	
	Annahama and Andrews and Annahama and Annaha	
	Ву	
	Distribution/	
	Availability Codes	
	Avera and/or	
	Dist Epecial (, %)	
	R' '	
	<u>'</u>	

ABSTRACT

A constitutive relationship was used to model the cyclic material response of damping test samples in separate bending and torsion configurations. This was done in order to better understand variations in reported values of damping for materials possessing strain dependent characteristics. The constitutive equations are based on a model of shape memory alloy stress-strain behavior and have been adapted especially for the study of nonlinear hysteresis and the problem of strain dependent damping. Experimental measurements and analytical material response analyses of separate bending and torsion test samples indicated that when the damping of a single nonlinear material is plotted against the one-dimensional local strain of the sample, results are produced which are difficult to compare. However, when the same results are plotted against an invariant measure of three-dimensional distortion the means by which one may compare the data is more straightforward. Also, the approach allows for a quantitative comparison of the damping at a material point to the overall damping. The method can be applied to any homogeneous isotropic nonlinear damping material.

ADMINISTRATIVE INFORMATION

This research described in this paper was performed at David Taylor Research Center, under the supervision of Dr. O.P. Arora, DTRC Code 2812. It was supported in part by an Office of Naval Technology (ONT) postdoctoral fellowship under the administration of the American Society for Engineering Education (ASEE) and by the Quiet Alloys Program which is part of the Functional Materials Block Program sponsored by Mr. Ivan Caplan (DTRC Code 0115) Program Element 62254N Task Area RS3454, Work Unit 1-2812-949. This report satisfies milestone 53SR1/4.

INTRODUCTION

In addition to add-on damping techniques currently being used in the Navy, material damping is being investigated as a potential means of further reducing machine vibration, noise, and sound emission in seafaring vessels. Ideally a high damping structural material provides a sufficient amount of both stiffness and damping so as to be used as a sole machine part or vibrating element without added treatments. Such materials are most useful for oscillating parts or elements that cannot be damped by conventional external treatments. Also these materials can be useful in situations where heat or other environmental factors (e.g. meisture, corrosion) have to be considered. This approach is also useful in damping longitudinal vibrations which cannot be effectively controlled by external treatments.

Because high stiffness and strength are required in many important applications, metals which possess a large inherent damping capacity have been extensively sought [1,2]. Some specific applications include gears and gear webs, pump casings, engine parts, propellers, and others (see [1]). High damping metals are also used as plug inserts and cladding, and such applications can provide a reduction of resonant amplification factors as well as the attenuation of ringing [1].

Generally "high damping" in metal is a measured peak loss factor or phase lag with a value of 10⁻² or higher. Indeed many alloy compositions have been studied and found to possess such levels of damping (e.g. see [3-8]). Mechanisms which give rise to damping in metals include: movement of point defects, dislocations or domain walls. These effects give rise to macroscopic hysteresis and thus damping. The damping capacity of high damping metals is strain dependent because the primary damping mechanisms function over a finite strain range. Such effects give rise to a well defined peak in the plot of measured damping vs. specimen strain amplitude. Examples of magnetostrictive metallic materials exhibiting strain-dependent damping are given in Fig. 1. This type of response is termed "nonlinear" because the measured damping capacity varies with specimen strain amplitude.

A generalized stress-strain diagram corresponding to a relatively large category of nonlinear damping mechanisms is illustrated in Fig. 2. Note from this figure that the damping mechanism is activated near a critical stress σ_c and becomes saturated at a strain of ε_0 . This type of hysteretic response can be associated with a number of nonlinear anelastic damping mechanisms. For example, in dislocation breakaway a minimum stress is required to force dislocations over nearby pinning points during loading. Upon unloading the elastic strain energy stored in the lattice of the material may be sufficient to move the dislocations back to their original positions. The net effect of this process is an elastic response with internal friction.

Other nonlinear anelastic damping mechanisms include the movement of mobile domain boundaries. Ferromagnetic domain walls, twin boundaries, antiferromagnetic domain walls, and phase domain walls fall into this category. Usually, a finite amount of stress (σ_c) is required to

initiate this type of mechanism, i.e. a specific amount of stress is required to overcome an energy barrier so that the boundaries may move. Release of the applied stress subsequently causes the mechanism to act in reverse because the elastic strain energy stored in the material is sufficient to move the boundaries back across the energy barrier. Again the net effect is an elastic response with energy dissipation due to internal friction. Also, these mechanisms may become saturated at a limiting value of strain. For example, the magnetic domains in high damping ferromagnetic alloys are arranged in a randomly criented pattern when the material is unstressed. However, upon application of a uniaxial stress the domains change their orientation and tend to align themselves in the direction of loading as the stress is increased. Once these domains become fully aligned any further stress cannot cause relative motion of the domains and the mechanism is said to be saturated. The amount of energy that can be dissipated by this type of damping mechanism is therefore limited to a fixed value for cyclic strain amplitudes greater than the limiting value of strain corresponding to saturation (ϵ_0).

The data obtained for a single strain dependent material in varied test configurations is often difficult to compare because of the inherent strain distributions that arise from the loading. Data from separate bending and torsion tests [3] given in Fig. 3 shows this effect; indeed the results indicate that the torsional tests produce significantly higher values of damping for common levels of peak sample strain. Also, the damping rises more steeply with peak sample strain in the torsion test. However it is important to note that the strains on the abscissa are shear strains in the case of torsional data and axial strains in the case of bending data and these separate strains are not equivalent; indeed axial strains give a measure of length change while shear strains refer to the distortion of right angles. This is an important aspect of the problem which will be discussed in the analysis section of this paper.

Strain dependent materials are, at best, difficult to model analytically because of their nonlinear characteristics. Early work in this area concentrated on evaluating the damping of members by combining material energy absorbing properties with geometric and stress distribution factors [9,10]. Another approach is to use a constitutive law which describes

nonlinear material behavior and hysteresis at a point, and this approach will be used here. Many such laws exist (e.g. see [11,12]), but these are usually specific to postyielding viscoplastic behavior and large strain levels. In this paper a proposed constitutive law [13,14] for the stress-strain behavior of shape memory alloys is adapted to the case of nonlinear damping. The equations of this law were applied to the cases of simple uniaxial tension-compression and shear loading of materials. Solid geometries of beam and shaft test samples in bending and torsion were also considered. The strain dependent nature of each test configuration was computed, and because this behavior was of primary interest, temperature and frequency effects were not considered.

ANALYSIS

A three-dimensional constitutive law of hysteretic material behavior was employed so that a useful study of strain dependent damping could be made. This law is based on the three dimensional generalization [14] of a one-dimensional model of shape memory alloy (SMA) stress-strain behavior [13], where the extension from one to three dimensions follows a method originally developed by Prager [15] (for a detailed development regarding this extension method see [16,17,14]). This choice of modeling schemes was pursued because the hysteretic response of superelastic SMA's is very similar in character to that of high damping metals (see Fig. 2), except that the stress and strain levels are different by many orders of magnitude. This does not prevent the use of the constitutive law, however, as long as the material properties of the law can be scaled to accommodate the lower stress and strain levels associated with the dissipative mechanisms of the damping material.

The constitutive law is for homogeneous and isotropic material behavior and is based upon a separation of strain and strain rate into elastic and inelastic components:

$$\varepsilon_{ij} = \varepsilon_{ij}^{cl} + \varepsilon_{ij}^{in} \tag{1a}$$

$$\dot{\boldsymbol{\epsilon}}_{ij} = \dot{\boldsymbol{\epsilon}}_{ij}^{cl} + \dot{\boldsymbol{\epsilon}}_{ij}^{in} \tag{1b}$$

Here an overhead dot represents differentiation with respect to time. Thus ε_{ij} and $\dot{\varepsilon}_{ij}$ are the three-dimensional tensors of strain and strain rate, and the superscripts "el" and "in" designate the respective elastic and inelastic components of each. The elastic component follows directly from the theory of isotropic elasticity [17]:

$$\varepsilon_{ij}^{el} = \frac{1+v}{E} \sigma_{ij} - \frac{v}{E} \sigma_{kk} \delta_{ij}$$
 (2)

where σ_{ij} is the stress tensor, δ_{ij} is the Kronecker delta¹, and where E and ν are the elastic material constants.

The basic equations for the evolution of inelastic strain were taken from the previously cited model of shape memory alloy behavior. In this model the growth of inelastic strain is a function of a backstress tensor β_{ij} , which is a variable that accounts for internal stress fields in the material, as described by the following set of equations:

$$\dot{\epsilon}_{ij}^{in} = \sqrt[4]{3K_2} \left[\sqrt[4]{3J_2} \right]^{n-1} \left[\frac{s_{ij} - b_{ij}}{\sigma_c} \right]$$
 (3)

$$b_{ij} = \frac{2}{3} \operatorname{E}\alpha \left[\epsilon_{ij}^{in} + f_{T} \frac{e_{ij}}{\frac{2}{3} \sqrt[4]{3I_{2}}} \operatorname{erf} \left[\frac{2}{3} a \sqrt[4]{3I_{2}} \right] \left\{ u \left[-\dot{I}_{2} \right] \right\} \right]$$
(4)

Here e_{ij} , s_{ij} , and b_{ij} are the deviatoric tensors of strain, stress and backstress respectively; the difference s_{ij} - b_{ij} is often referred to as the effective stress. The quantities I_2 , I_2 , and I_2 are the second order invariants of the deviatoric tensors of strain, dimensionless effective stress, and strain rate, respectively; these quantities are defined below:

$$\begin{split} e_{ij} &= \epsilon_{ij} - \frac{1}{3} \, \epsilon_{kk} \, \delta_{ij} \qquad , \qquad \quad I_2 = \frac{1}{2} \, e_{ij} \, e_{ij} \quad , \qquad \quad K_2 = \frac{1}{2} \, \dot{e}_{ij} \, \dot{e}_{ij} \\ s_{ij} &= \sigma_{ij} - \frac{1}{3} \, \sigma_{kk} \, \delta_{ij} \end{split}$$

 $^{^1}$ $\delta_{ij} {=} 1$ if i=j, $\delta_{ij} {=} 0$ if i≠j, i,j=1,2,3

$$b_{ij} = \beta_{ij} - \frac{1}{3} \, \beta_{kk} \, \delta_{ij} \qquad , \qquad \quad J_2 = \frac{1}{2} \, \frac{s_{ij} - b_{ij}}{\sigma_c} \, \frac{s_{ij} - b_{ij}}{\sigma_c} \label{eq:bij}$$

Thus the growth of inelastic strain is a function of stress, backstress, and strain rate. Also, note here that plus sign appearing with the radical sign of the square root of the invariants in Eqs. (3)-(4) indicates that the square root, once taken, is to be positive (i.e. the absolute value of the square root). The tensor e_{ij} is known as the distortional component of strain because, by definition, it subtracts the dilatational component of deformation out of the strain tensor ε_{ij} . Therefore, I_2 represents a measure of volumetric distortion that is invariant with respect to coordinate transformations, and this will be an important quantity in the forthcoming discussion. The material constants in Eqs. (2)-(4) are:

E: Young's extensional elastic modulus

v: Poisson ratio of elastic material

σ_c: minimum axial stress necessary to activate the damping mechanism

 α : constant which determines the slope of the inelastic region = $E_v/(E - E_v)$, where E_v is the inelastic slope

n: constant controlling the sharpness of transition from elastic to inelastic behavior

f_T: constant controlling the size of the hysteresis loop

a: constant controlling the amount of elastic recovery during unloading

Also, Eqs. (3) and (4) contain two special functions: the error function, erf(), and the unit step function, {u()}. Simply stated the purpose of the error and unit step functions contained in Eq. (4) is to allow for the recovery of accumulated inelastic strain during unloading, and thus simulate the unique behavior of superelastic materials [13,14].

Let us take a moment to explain the role of the inelastic response in the modeling of strain dependent damping. The inelastic component of strain is responsible for the dissipation of energy that takes place in cyclic loading. Equations (1)-(4) have been used to represent the macroscopic stress-strain behavior of shape memory alloys, and especially superelastic materials [13,14]. The hysteretic character of superelasticity is macroscopically similar to that of nonlinear anelasticity except that the respective stress and strain levels of each type of response

are different by many orders of magnitude. Therefore, the inelastic response governed by Eqs. (3)-(4) can be used to represent the macroscopic effect of a nonlinear anelastic damping mechanism.

By using Eqs. (1)-(4), a number of special cases can be considered. First let us consider the cases of uniaxial tension-compression and pure shear loading. The state of uniaxial loading (superscript u) is described by:

$$\epsilon_{ij}^{u} = \begin{bmatrix} \epsilon & 0 & 0 \\ 0 & -\mu \epsilon & 0 \\ 0 & 0 & -\mu \epsilon \end{bmatrix} \qquad \hat{\epsilon}_{ij}^{u} = \begin{bmatrix} \dot{\epsilon} & 0 & 0 \\ 0 & -\rho \dot{\epsilon} & 0 \\ 0 & 0 & -\rho \dot{\epsilon} \end{bmatrix} \qquad \sigma_{ij}^{u} = \begin{bmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \beta_{ij}^{u} = \begin{bmatrix} \beta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Here ε , σ , and β are the axial strain, stress, and backstress in the x direction of Cartesian space, respectively. Also the lateral strain and strain rate induced by the Poisson effect (- $\mu\varepsilon$ and - $\rho\varepsilon$) are associated with the coefficients μ and ρ respectively. Strictly speaking, μ and ρ are neither constant nor equal due to the nonlinear effect induced by the damping mechanism. In order to evaluate these coefficients the lateral strain and strain rate are decomposed into elastic and inelastic parts and we will assume that volume changes induced by axial loading are associated only with elastic deformation. Thus the inelastic part of the strain and strain rate are associated with incompressible behavior as is done in the theories of plasticity and viscoplasticity [17]. This assumption is plausible since the damping mechanisms involve movement of dislocations, point defects, domain walls, or polymer chains none of which induce a change in volume. Using this assumption, the elastic component of the lateral strain is related to the elastic exial strain by the elastic Poisson ratio ν , and the inelastic component is related to the axial inelastic strain by the Poisson coefficient of incompressible deformation (which is 0.5); therefore - $\mu\varepsilon$ =- $\nu\varepsilon^{\epsilon_1}$ - .5 ε^{in} . Similarly, the lateral strain rate is - $\rho\dot{\varepsilon}$ =- $\nu\dot{\varepsilon}^{\epsilon_1}$ - .5 $\dot{\varepsilon}^{in}$. Using these relations it can be shown (Appendix A) that μ and ρ are:

$$\mu = \frac{1}{2} - \frac{1}{E} \left[\frac{1}{2} - v \right] \frac{\sigma}{\epsilon}$$

$$\rho = \frac{1}{2} - \frac{1}{E} \left[\frac{1}{2} - \nu \right] \frac{d\sigma}{d\epsilon}$$

Thus μ and ρ are clearly variable coefficients which are not necessarily equal to each other.

For the conditions of pure shear loading (superscript s) we have:

$$\epsilon_{ij}^{s} = \begin{bmatrix} 0 & \frac{\gamma}{2} & 0 \\ \gamma & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \dot{\epsilon}_{ij}^{s} = \begin{bmatrix} 0 & \dot{\gamma} & 0 \\ \dot{\gamma} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \sigma_{ij}^{s} = \begin{bmatrix} 0 & \tau & 0 \\ \tau & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \beta_{ij}^{s} = \begin{bmatrix} 0 & \xi & 0 \\ \xi & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Here γ and $\dot{\gamma}$ are the engineering shear strain and strain rate, τ is the shear stress, and ξ is the shear backstress in the xy plane of Cartesian space.

By using the appropriate stress, backstress, and strain tensors, as well as their respective deviators and associated invariants, Eqs. (1)-(4) produce the following uniaxial equations:

$$\dot{\sigma} = E \left[\dot{\epsilon} - \frac{2(1+\rho)}{3} \left| \dot{\epsilon} \right| \; \left| \frac{\sigma - \beta}{\sigma_c} \right|^{n-1} \left[\frac{\sigma - \beta}{\sigma_c} \right] \; \right]$$

$$\beta = E\alpha \left[\varepsilon - \frac{\sigma}{E} + f_T \operatorname{erf} \left[\frac{2(1+\mu)}{3} a \varepsilon \right] \left\{ u(-\varepsilon \dot{\varepsilon}) \right\} \right]$$

If the behavior is only a small departure from elasticity then $\mu \approx \rho \approx \nu$; conversely if a condition of strain and strain rate exists where inelastic behavior dominates and where $\sigma/\epsilon \ll E$ and $d\sigma/d\epsilon \ll E$ then the response is essentially incompressible with $\mu \approx \rho \approx .5$. Now, since μ and ρ appear only in terms associated with inelastic strain, the previous equations can be simplified by setting both Poisson coefficients equal to 0.5. This does not greatly affect the numerical results since these terms will be significant only in the inelastic region (i.e. when $\sigma_0/E \leq \epsilon$). Thus we obtain:

$$\dot{\sigma} = \mathbf{E} \left[\dot{\mathbf{z}} - |\dot{\mathbf{z}}| \left| \frac{\boldsymbol{\sigma} - \boldsymbol{\beta}}{\boldsymbol{\sigma}_{\mathbf{c}}} \right|^{n-1} \left[\frac{\boldsymbol{\sigma} - \boldsymbol{\beta}}{\boldsymbol{\sigma}_{\mathbf{c}}} \right] \right]$$
 (5)

$$\beta = E\alpha \left[\varepsilon - \frac{\sigma}{E} + f_T \operatorname{erf}(a\varepsilon) \left\{ u(-\varepsilon\dot{\varepsilon}) \right\} \right]$$
 (6)

For the case of pure shear loading the governing differential equations are:

$$\dot{\tau} = G \left[\dot{\gamma} - |\dot{\gamma}| \left| \frac{\tau - \xi}{\tau_c} \right|^{n-1} \left[\frac{\tau - \xi}{\tau_c} \right] \right]$$
 (7)

$$\xi = \frac{E\alpha}{3} \left[\gamma - \frac{\tau}{G} + \sqrt{\epsilon} f_{T} \operatorname{erf} \left[\frac{a\gamma}{\sqrt{3}} \right] \left\{ u(-\gamma\dot{\gamma}) \right\} \right]$$
 (8)

where

$$G = \frac{E}{2(1 + v)}$$
 is the elastic shear modulus

$$\tau_c = \frac{\sigma_c}{\sqrt{3}}$$
 is the shear stress whereupon the damping mechanism is activated

Note that τ_c falls out of the formulation automatically in a manner that is consistent with the theory of maximum distortional strain energy [18]. This is because Eq. (3) is dependent on the stress gradient of a potential function [14,16] that contains a Bingham type condition for the onset of the inelastic damping mechanism.

As noted before, the damping mech misms become saturated at an axial strain of ε_0 . This differs from SMA hysteretic behavior and therefore the model must be modified. The modification consists of specifying that the growth of inelastic strain be stopped at a saturation limit beyond which linear elastic behavior once again takes place. To do this the second term in Eq. (5) is multiplied by the unit step function $\{u(\varepsilon_0 - |\varepsilon|)\}$. At levels where $\varepsilon < \varepsilon_0$, $\{u(\varepsilon_0 - |\varepsilon|)\}=1$ and inelastic growth of strain may proceed, but when $\varepsilon \ge \varepsilon_0$, $\{u(\varepsilon_0 - |\varepsilon|)\}=0$ and continued loading beyond ε_0 is elastic. Similarly, for saturation of damping mechanisms in shear the second term on the right hand side of Eq. (7) is multiplied by $\{u(\gamma_0 - |\gamma|)\}$, where γ_0 is the shear strain of saturation.

Since we are modeling materials which are both homogeneous and isotropic, the saturation process in more general three-dimensional loadings can be represented by a value of the invariant I_2 which is determined from either ϵ_0 or γ_0 ; we will call this value I_{20} . Thus

saturation is determined by a specific amount of distortion, and the unit step functions $\{u(\epsilon_0-|\epsilon|)\}$ and $\{u(\gamma_0-|\gamma|)\}$ can be obtained from $\{u(\sqrt{3I_{20}}-\sqrt{3I_2}\}.$

To summarize, the equations that are set forth to represent the respective three dimensional, axial, and shear responses of nonlinear anelastic materials are as follows:

$$\underline{3D}: \qquad \dot{\epsilon}_{ij}^{in} = \sqrt[4]{3K_2} \left[\sqrt[4]{3J_2} \right]^{n-1} \left[\frac{s_{ij} - b_{ij}}{\sigma_c} \right] \left[u \left[\sqrt{3I_{20}} - \sqrt[4]{3I_2} \right] \right] \qquad (9)$$

$$b_{ij} = \frac{2}{3} \operatorname{E}\alpha \left[\epsilon_{ij}^{in} + f_{T} \frac{e_{ij}}{\frac{2}{3} \sqrt[4]{3I_{2}}} \operatorname{erf} \left[\frac{2}{3} a \sqrt[4]{3I_{2}} \right] \left\{ u \left[-\dot{I}_{2} \right] \right\} \right]$$
 (10)

$$\underline{Axial}: \qquad \dot{\sigma} = E \left[\dot{\varepsilon} - |\dot{\varepsilon}| \left| \frac{\sigma - \beta}{\sigma_{c}} \right|^{n-1} \left[\frac{\sigma - \beta}{\sigma_{c}} \right] \left\{ u(\varepsilon_{0} - |\varepsilon|) \right\} \right]$$
(11)

$$\beta = E\alpha \left[\varepsilon - \frac{\sigma}{E} + f_T \operatorname{erf}(a\varepsilon) \left\{ u(-\varepsilon\dot{\varepsilon}) \right\} \right]$$
 (12)

Shear:
$$\dot{\tau} = G \left[\dot{\gamma} - |\dot{\gamma}| \left| \frac{\tau - \xi}{\tau_c} \right|^{n-1} \left[\frac{\tau - \xi}{\tau_c} \right] \left\{ u(\gamma_0 - |\gamma|) \right\} \right]$$
 (13)

$$\xi = \frac{E\alpha}{3} \left[\gamma - \frac{\tau}{G} + \sqrt{3} f_{T} \operatorname{erf} \left[\frac{a\gamma}{\sqrt{3}} \right] \left\{ u(-\gamma\dot{\gamma}) \right\} \right]$$
 (14)

where

$$\gamma_0 = \frac{2(1+\nu)}{\sqrt{3}} \epsilon_0$$
 is strain limiting inelastic growth in shear

The hysteresis loops associated with axial and shear behavior are produced by numerical integration of Eqs. (11)-(12) and (13)-(14), and by specifying a sinusoidal history of strain input with amplitudes of ε_p in the axial case and γ_p in the shear case (Appendices B and C). These amplitudes were specified to be greater than the saturation strains so that the full character of the predicted response could be plotted. The results of calculations for the axial and shear loading conditions are given in Figs. 4 and 5 respectively. Both figures possess the same characteristics:

10

elastic behavior dominates in the region of the origin as well as outside the limiting strain, and a hysteresis loop is manifested in the full cycle of strain application. The area enclosed by the hysteresis loop represents the energy absorbed by the material per cycle of oscillation, and this quantity is denoted as ΔW . An elastic modulus of $E=28.5 \times 10^6$ psi and saturation strain of $\epsilon_0=0.0001$ were selected based on the elastic modulus and approximate strain of peak damping in Fe-Cr alloys (see Fig. 1). The remaining material constants used in the calculations which generated Figs. 4 and 5 were not selected to reproduce the behavior of any specified damping material; rather they were selected to approximate a typical pattern of hysteresis in nonlinear damping materials and to permit investigative analyses. It should be noted that the numerical results generated by the constitutive equations were obtained by Runge-Kutta fourth order integration, and these results for the material response were strain rate independent. Also the elastic and inelastic material properties (i.e. E, E_y , and σ_c) are accurately reproduced in numerical calculations [14].

By having numerical results of the type just presented, we can now compute the damping according to the definition of the loss factor, η , defined as

$$\eta = \frac{\Delta W}{2\pi W} \tag{15}$$

where ΔW is defined as given above, and W is a measure of stored energy most often selected as

$$W = \frac{1}{2} \varepsilon_{\text{max}} \sigma \bigg|_{\varepsilon_{\text{max}}}$$
 (16)

By using Eqs. (11)-(12) and (13)-(14) in calculations for the cyclic material response over a range of peak axial and shear strains, and computing the loss factor associated with each peak strain according to Eqs. (15) and (16), the general character of the damping vs. strain diagram of nonlinear materials was produced (computer algorithms are given in Appendices D and E); this

is shown in Fig. 6. Note that both curves possess the characteristic damping peak associated with nonlinear damping materials.

However the separate curves in Fig. 6 representing axial and shear loading differ significantly with respect to one another, and this can make the results difficult to interpret. In an effort to understand these results, the amount of energy absorbed in each loading configuration was evaluated. The amount of energy absorbed is plotted as a function of peak strain in Fig. 7. Above the respective axial and shear saturation strains the amount of energy absorbed by the material is essentially the same for both loading configurations, their difference being less than 1%. Therefore the difference in the character of the two separate responses must be due to other factors.

It turns out that the plots given in both Figs. 6 and 7 are misleading because the abscissa of these figures represents values of strain associated with separate axial and shear loading conditions, and the strains associated with these separate conditions are not equivalent. Since damping is a material property, it is desirable to plot strain dependent material damping values using a measure that will unify the curves from separate tests. Such a method would also provide a basis by which to present and compare damping data for a variety of materials. Therefore another measure of deformation equivalent to both types of loading needs to be employed. One such possibility is to use a measure of distortion rather than strain. Let us define an equivalent strain $\bar{\epsilon}$ as follows:

$$\bar{\varepsilon} = \sqrt{3I_2} \tag{17}$$

This measure is similar to the effective plastic strain in plastically deforming materials [17]. It is clear that $\bar{\epsilon}$ has a physical meaning that is independent of the choice of coordinate axes since it is based on the invariant I_2 , which is the second invariant of the deviatoric strain e_{ij} . Therefore $\bar{\epsilon}$ is an invariant measure of distortion.

By considering the separate conditions of axial and shear loading, and by taking the variable Poisson coefficient to be the elastic constant ν for axial case, the equivalent strains for each condition are:

$$\bar{\epsilon}^{u} = (1 + v) \epsilon$$
 (uniaxial loading)

$$\xi^{\rm s} = \frac{\sqrt{3}}{2} \gamma$$
 (shear loading)

Using the peak equivalent strains of axial and shear loading in place of the peak strains used in Figs. 6 and 7 produces a more consistent pattern of results. This is shown in Fig. 8 where the energy absorbed as a function of $\bar{\epsilon}$ is in very good agreement along the entire abscissa for both cases. In Fig. 9 the loss factors of the axial and shear loading cases are also plotted against the peak equivalent strain. Even though the peaks of the separate curves are not of equal magnitude the results in this figure are now very similar; indeed the rise and fall of each curve follow the same trend and the peak of each damping curve occurs at approximately the same level of distortion.

The peak of the loss factor curve for shear loading is slightly higher than the peak of the axial loss factor curve due to a smaller value of stored energy in the shear loading case. This is another complication that arises from the nonlinear nature of the of the stress-strain material response and (for equal amounts of distortion) causes the value of peak shear stress to be lower than the peak axial stress. Consequently, at equal levels of distortion, the measure of stored energy (Eq. (17)) will be larger in axial loading than in shear and this will cause the loss modulus in shear to be greater than the loss modulus in axial loading.

Bending and torsion are common configurations in which to measure damping. The solid beam has length L and rectangular cross-section of width b and thickness h. Although the stress-strain response is nonlinear we can consider both cases in a simple fashion because the response takes place in a manner which gives symmetric behavior for positive and negative strains. When considering bending and torsion problems with pronounced plastic deformation

and nonsymmetrical stress-strain responses, then special considerations must be made when computing the acting moments [17].

Schematic illustrations of bending and torsion are shown in Fig. 10. The torsional solid shaft has length L and circular cross-section of radius R. Note that the strain profiles in each geometry are linear, passing through zero at the position of the neutral axis of the beam and starting at zero at the center of the shaft. Also note that ε_p is the value of the axial strain at the beam surface while γ_p is the value of the engineering shear strain at the shaft surface. The angles θ and ϕ are the curvature of the bending beam and the angle of twist of the shaft respectively. Because the problems under consideration involve only small strain, the following simple relations can be used to compute the moments and angular displacements for the beam and shaft geometries respectively:

$$M = -\int_{A} y \sigma dA$$
 and $\theta = \frac{2\varepsilon_{p}L}{h}$ (beam)

$$T = \int_{A} r \tau dA$$
 and $\phi = \frac{\gamma_p L}{R}$ (shaft)

Here y is the vertical distance from the neutral axis of the beam cross-section, σ is the axial stress in the longitudinal fibers of the beam, and M is the resultant moment bending the beam; for the shaft r is the distance from the center of the circular cross-section, τ is the shear stress due to torsion, and T is the resultant torque twisting the shaft. The equations given above relating θ and ϕ to sample dimensions and surface strain amplitude are easily deducible from simple geometrical arguments which involve the knowledge of a linear strain profile and the restriction of small strains.

In the numerical analyses associated with these bending and torsion tests, the surface strains of each test sample were specified to act sinusoidally in time. Each geometry was subdivided into a large number of finite, but thin, subsections (i.e. the infinitesimal distances dy

and dr in Fig. 10 were replaced by small but finite distance Δy and Δr respectively). Also, the strain distribution for each finite subsection was assumed to be constant over the subsection thickness and the value of the strain was taken as the value of the strain profile at the center of the subsection. Knowing the strain profile of the cross-section of each geometry and the history of the respective surface strains, the stress history for each subsection of the geometry was computed numerically. Specifically, Eqs. (11)-(12) were integrated to give the stress profile time history of the bending beam and (13)-(14) were integrated for the shear stress profile time history of the shaft (see Appendices F and G). Then the following formulas were used to compute the resultant moment and torque histories of the beam and shaft:

$$M = -b \sum_{i=1}^{N} y_i \sigma_i \Delta y$$

$$T = 2\pi \sum_{i=1}^{N} (r_i)^2 \tau_i \Delta r$$

where N is the number of subdivisions making up the cross-sectional geometry and where the subscript i indicates reference to the location of a single subsection.

The loss factor of each sample geometry was then calculated for a specified value of surface strain amplitude according to Eq. (15) where ΔW was determined by the area enclosed by the resultant moment vs. angular displacement hysteretic response and W was determined by

$$W = \frac{1}{2} \theta_{\text{max}} M \bigg|_{\theta_{\text{max}}}$$
 (beam)

$$W = \frac{1}{2} \phi_{\text{max}} T \Big|_{\phi_{\text{max}}}$$
 (shaft)

The damping values which were computed in this way were found to be independent of sample geometry, i.e. for a given surface amplitude the ratio of ΔW to W remained constant for changes

in cross-sectional size, sample length or both. This effect is due to the fact that a proportional, volume of material is undergoing deformation wherein the damping mechanism is activated and this proportion of volume is constant irrespective of sample size for both simple bending and torsion.

In Fig. 11 the loss factor was plotted against the surface amplitude for both the bending and torsion cases by repeating the calculations over a range of surface amplitudes. Note that the character of the damping vs. surface amplitude curves are different with respect to one another. This is analogous the trend shown earlier in Fig. 6 for one dimensional behavior. Also, by comparing Fig. 11 to Fig. 6 it is clear that the character of the damping vs. peak strain curve of each sample is quite different than that corresponding to the respective one-dimensional material point responses. This is due to the strain dependent nature of the damping and the fact that strain is nonuniformly distributed throughout the sample; therefore some regions of the geometry may be contributing significantly to the overall damping of the solid sample while others are not.

Using Eq. (11) to calculate the amounts of peak equivalent strain at the surface of the bending and torsion samples, Fig. 12 shows that the use of peak equivalent strain gives an improved measure of correlation in the same manner that was exhibited earlier for the one-dimensional cases.

Thus presentation of nonlinear damping data as a function of equivalent strain rather than as a function of sample strain can be very useful. It is probably most useful in comparing damping data obtained by different test methods. It may also be useful in design work where the dynamic strains in a vibrating part or member are known. Along this line, let us briefly consider an example where a designer wishes to use a high damping, but nonlinear, material in an application where bending is the primary mode of deformation, and suppose that damping data is available only from torsional tests. If the vibrational strain levels to be expected in service can be deduced from load and design analyses, then these strain levels can be converted to the measure of equivalent strain introduced in this paper. The designer would then be able to estimate whether or not the material damping will be in a range of peak performance for the

application of interest by applying the same conversion to the peak shear strains of the torsional damping data.

SUMMARY

The work presented in this paper includes three major aspects; 1) modeling of nonlinear (or strain dependent) damping behavior via constitutive equations, 2) relating the damping of the material to the damping of a test specimen, and 3) a way of improving correlation of nonlinear damping data via use of equivalent measures of distortion. These efforts were conducted in order to gain a better understanding of macroscopic nonlinear high damping material behavior and also to obtain a means in which to better correlate damping data from tests which use different sample geometries. The modeling scheme applies to homogeneous isotropic materials and is adapted from a constitutive model of the viscoplastic type through incorporation of constants that represent the onset of damping mechanisms. Also the model was modified to include damping mechanisms that become saturated after a given amount of strain. Analyses were made to calculate the loss factor of the common damping test configurations of bending and torsion. To do this material point relationships were used at a large number of points making up the cross-sectional geometry. In this way it was possible to relate the damping of the material to the damping of the specimen. The results did not depend on the relative dimensions of the sample geometry; rather the calculated loss factors depended only on the mode of deformation. The results showed that the strain dependent damping associated with each test were difficult to compare when plotted solely against the peak surface strain of the sample geometry. This is because the peak strains that correspond to each of these test configurations, namely axial and shear strain, are different from one another. However if an invariant measure of peak sample distortion is used in place of peak sample strain, then the correlation of the nonlinear damping of separate bending and torsion samples improves considerably. Such an improved capacity for the correlation of nonlinear damping data is very useful for comparison of data obtained from different tests. Future research will include the modeling of specific

nonlinear damping data. Also, constitutive model material parameters that are physically motivated by the microstructure will be studied.

Fig. 1. Strain Amplitude Dependent Damping in Fe-Cr Based High Damping Alloys.

Fig. 2. Generalized Macroscopic Hysteresis of Nonlinear Damping Materials.

Fig 3. Strain Dependent Damping of Cu-Mn in Separate Bending and Torsion Tests [3].

Fig. 4. Hysteretic Behavior Calculated for Pure Axial Loading.

Fig. 5. Hysteretic Behavior Calculated for Pure Shear Loading.

Fig. 6. Strain Amplitude Dependent Damping for Pure Axial and Shear Loading.

Fig. 7. Energy Absorbed in Axial and Shear vs. Peak Axial and Shear Strains.

Fig. 8. Energy Absorbed in Axial and Shear vs. Peak Equivalent Strain.

Fig. 9. Amplitude Dependent Damping in Axial and Shear vs. Peak Equivalent Strain.

Bending Beam (Length: L, Width: b, Thickness: h)

Twisting Shaft (Length: L, Radius R)

Fig. 19. Schematic Drawing of Strain Profile in Bending and Torsion Geometries.

Fig. 11. Amplitude Dependent Damping in Bending and Torsion vs. Peak Surface Strain.

Fig. 12. Amplitude Dependent Damping in Bending and Torsion vs. Peak Equivalent Strain.

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

REFERENCES

- 1. Perkins, A.J., G.R. Edwards, and N.A. Hills, "Materials Approaches to Ship Silencing," Report No. NPS-59Ps74061, Naval Postgraduate School, Monterey, California, June, 1974.
- 2. Schetky, L.M. and J. Perkins, "The 'Quiet' Alloys," Machine Design, April 6, 1978, pp. 202-206.
- 3. Dew, D., "Strain Dependent Damping Characteristics of a High Damping Manganese-Copper Alloy," Report No. NPS69-86-007, Naval Postgraduate School, Monterey, California, September, 1986.
- 4. Suzuki, K., T. Fujita, and M. Hasebe, "Damping Capacity and Mechanical Properties of Sintered Fe-Cr-Mo High Damping Alloys," *Proceedings of the 6th International Conference on Internal Friction and Ultrasonic Attenuation in Solids*, Hasiguti, R. and Mikoshiba, N. (ed.), University of Tokyo Press, 1977, pp. 757-761.
- 5. Schneider, W., P. Schrey, G. Hausch, and E. Török, "Damping Capacity of Fe-Cr and Fe-Cr Based High Damping Alloys," *Journal De Physique*, Colloque C5, Supplément au n° 10, Tome 42, October, 1981, pp. C5-635 C5-639.
- 6. Masumoto, M., M. Hinai, and S. Sawaya, "Damping Capacity and Pitting Corrosion Resistance of Fe-Mo-Cr Alloys," *Transactions of the Japan Institute of Metals*, Vol. 25, No. 12, 1984, pp. 891-899.
- 7. Nippon Kokan K.K., Trangaloy Data Sheets, 1981.
- 8. Kawabe, H. and K. Kuwahara, "A Consideration of the Strain Dependent Damping and Modulus in Ferromagnetic Metals," *Transactions of the Japan Institute of Metals*, Vol. 22, No. 5, 1981, pp. 301-308.
- 9. Lazan, B.J., "Effect of Damping Constants and Stress Distribution on the Resonance Response of Members," *Journal of Applied Mechanics*, Transactions of the ASME, Vol. 75, 1953, pp. 201-209.
- 10. Cochardt, A.W., "A Method for Determining the Internal Damping of Machine Members," *Journal of Applied Mechanics*, Transactions of the ASME, Vol. 76, 1954, pp. 257-262.
- 11. Krempl, E., "Models of Viscoplasticity: Some Comments on Equilibrium (Back) Stress and Drag Stress," *Acta Mechanica*, Vol. 69, 1987, pp. 25-42.
- 12. Miller, A.K. (ed.), *Unified Constitutive Equations for Creep and Plasticity*, Elsevier Applied Science, 1987.
- 13. Graesser, E.J. and Cozzarelli, F.A., "Shape Memory Alloys as New Materials for Aseismic Isolation," ASCE, *Journal of Engineering Mechanics*, scheduled for publication in Nov. 1991.

- 14. Graesser E.J., "Multi-Dimensional Modeling of Hysteretic Materials Including Shape Memory Alloys: Theory and Experiment," Ph.D. Dissertation, Dept. of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York, February, 1990.
- 15. Prager, W., "Strain Hardening Under Combined Stresses," *Journal of Applied Physics*, Vol. 16, pp. 837-840.
- 16. Graesser, E.J. and F.A. Cozzarelli, "Extension of a One-Dimensional Model of Hysteresis to Three Dimensions: Procedure and Verification," Proceedings of the ASME Conference on High Temperature Constitutive Modeling: Theory and Application, edited by A.D. Freed and K.P. Walker, part of the ASME Winter Meeting, Dec., 1991, Atlanta, Georgia.
- 17. Shames, I.H. and F.A. Cozzarelli, Elastic and Inelastic Stress Analysis, Prentice-Hall, 1991.
- 18. Timoshenko, S.P. and J.N. Goodier, Theory of Elasticity, Third Edition, McGraw-Hill, 1970.

APPENDIX A

In this appendix, we will examine the Poisson effect associated with isotropic material deformation with nonlinear inelastic effects. To do this first consider the strain tensor ϵ_{ij} associated with pure axial stressing, i.e. without off-diagonal (shear) strains. The total strain is made up of separate elastic and inelastic parts as follows:

$$\varepsilon_{ij} = \varepsilon_{ij}^{cl} + \varepsilon_{ij}^{in}$$

where the elastic part (superscript el) is related to the stress by elasticity theory and where the inelastic part is associated with incompressible deformation mechanisms (i.e. mechanisms which operate without any associated volume changes; e.g. dislocation glide). Therefore, for the case of uniaxial (superscript u) stressing

$$\epsilon_{ij} = \epsilon_{ij}^{u} = \begin{bmatrix} \epsilon^{el} & 0 & 0 \\ 0 & -\nu\epsilon^{el} & 0 \\ 0 & 0 & -\nu\epsilon^{el} \end{bmatrix} + \begin{bmatrix} \epsilon^{in} & 0 & 0 \\ 0 & -\frac{1}{2}\epsilon^{in} & 0 \\ 0 & 0 & -\frac{1}{2}\epsilon^{in} \end{bmatrix}$$

Note that the total axial strain is specified to be aligned along the x coordinate of Cartesian space with $\varepsilon^{el} = \sigma/E$. This in turn leads to

$$\epsilon_{ij} = \epsilon_{ij}^{u} = \begin{bmatrix} \epsilon^{el} + \epsilon^{in} & 0 & 0 \\ 0 & -\nu \epsilon^{el} - \frac{1}{2} \epsilon^{in} & 0 \\ 0 & 0 & -\nu \epsilon^{el} - \frac{1}{2} \epsilon^{in} \end{bmatrix}$$

Thus it is clear that the Poisson induced strains are composed of an elastic part which is related to the elastic strain by Poisson's ratio and an inelastic part which is related to the inelastic

strain by the coefficient 1/2. By this process it is clear that the inelastic part of strain satisfies the condition of incompressibility.

Now, by using $\varepsilon^{el} = \sigma/E$ and $\varepsilon = \varepsilon^{el} + \varepsilon^{in}$ let us evaluate the Poisson induced strains in more detail. First note that

$$-\nu\epsilon^{el} - \frac{1}{2}\epsilon^{in} \; = \; -\nu\,\frac{\sigma}{E} - \frac{1}{2}\bigg[\,\epsilon - \frac{\sigma}{E}\,\bigg] \; = \; \bigg[\,\frac{1}{E}\,\bigg[\,\frac{1}{2} - \nu\,\,\bigg]\,\frac{\sigma}{\epsilon} - \frac{1}{2}\,\bigg]\,\epsilon$$

Thus, by defining a variable Poisson coefficient μ as

$$\mu = \frac{1}{2} - \frac{1}{E} \left(\frac{1}{2} - \nu \right) \frac{\sigma}{\varepsilon} \tag{A1}$$

it follows that

$$-\mu\varepsilon = -\nu\varepsilon^{\text{el}} - \frac{1}{2}\varepsilon^{\text{in}} \tag{A2}$$

$$\varepsilon_{ij}^{u} = \begin{bmatrix} \varepsilon & 0 & 0 \\ 0 & -\mu \varepsilon & 0 \\ 0 & 0 & -\mu \varepsilon \end{bmatrix}$$
 (A3)

Now, from Eq (A3) we can compute the strain rate tensor $\dot{\epsilon}^u_{ij}$

$$\dot{\epsilon}_{ij}^{u} = \begin{bmatrix} \dot{\epsilon} & 0 & 0 \\ 0 & -\mu\dot{\epsilon} - \dot{\mu}\epsilon & 0 \\ 0 & 0 & -\mu\dot{\epsilon} - \dot{\mu}\epsilon \end{bmatrix}$$

From this let us proceed to evaluate the Poisson induced strain rates in more detail. Considering Eq. (A1) it follows that

$$\dot{\mu} = -\frac{1}{E} \left[\frac{1}{2} - \nu \right] \left[-\frac{\sigma}{\epsilon^2} \dot{\epsilon} + \frac{1}{\epsilon} \dot{\sigma} \right]$$

and this leads to

$$-\mu\dot{\epsilon} - \dot{\mu}\epsilon = -\frac{1}{2}\dot{\epsilon} + \frac{1}{2}\left(\frac{1}{2} - v\right)\dot{\sigma} = -\frac{1}{2}\dot{\epsilon} + \left(\frac{1}{2} - v\right)\dot{\epsilon}^{el}$$

$$= -v\dot{\epsilon}^{el} - \frac{1}{2}(\dot{\epsilon} - \dot{\epsilon}^{el}) = -v\dot{\epsilon}^{el} - \frac{1}{2}\dot{\epsilon}^{in} \tag{A4}$$

Thus the Poisson induced strain rate decomposes into two parts: one part is an elastic component and is related to the axial strain rate by the Poisson ratio, and an inelastic part that is associated with the inelastic strain rate in a manner consistent with incompressibility.

By using $\dot{\epsilon}^{el} = \dot{\sigma}/E$ and $\dot{\epsilon} = \dot{\epsilon}^{el} + \dot{\epsilon}^{in}$ Eq. (A4) becomes

$$-\nu \dot{\varepsilon}^{el} - \frac{1}{2} \dot{\varepsilon}^{in} = \frac{1}{E} \left(\frac{1}{2} - \nu \right) \dot{\sigma} - \frac{1}{2} \dot{\varepsilon}$$

or

$$-\mu\dot{\epsilon} - \dot{\mu}\epsilon = -\left[\frac{1}{2} - \frac{1}{E}\left(\frac{1}{2} - \nu\right)\frac{d\sigma}{d\epsilon}\right]\dot{\epsilon}$$

Thus the variable Poisson coefficient associated with strain rate (which is denoted here as ρ) is as follows:

$$\rho = \frac{1}{2} - \frac{1}{E} \left[\frac{1}{2} - v \right] \frac{d\sigma}{d\varepsilon}$$

and

$$\dot{\epsilon}^u_{ij} = \begin{bmatrix} \dot{\epsilon} & 0 & 0 \\ 0 & -\rho \dot{\epsilon} & 0 \\ 0 & 0 & -\rho \dot{\epsilon} \end{bmatrix}$$

for axial stressing.

APPENDIX B

<u>FORTRAN MAIN PROGRAM</u> (all subroutines and function subprograms that are not specifically related to the calculations being made here are given in Appendix H):

```
====> Program Name: UNIAXIAL.FOR
    ----> This program will carry out a Runge-Kutta integration on the
          stress-strain equations of the SMA hysteretic model for axial
C
          loading. Note that inelastic behavior is suppressed beyond EPSLNO.
Ċ
          The strain history is prescribed (i.e. input) as sinusoidal. Stress is the output variable. Strain and stress pairs (i.e. the hysteresis curve) are written to data files for plotting with GRAPHER (which reads ASCII data arranged in column pairs).
C
c
C
C
     NOMENCLATURE:
REAL CONSTANTS:
                   Material constant controlling shape of hysteresis
                   -Ey/(E-Ey) where Ey is the inelastic modulus
Amplitude of strain input
         AMP
                   Young's modulus
         EPSLNO Strain beyond which inelastic growth is supressed
          FREQ
                   Prequency of cyclic strain input
         PT
                   Material constant controlling size of hysteresis
                   Overstress power (controls sharpness of transition to inel.)
          UNPW
                   Poisson's ratio
         VNEWIN Inelatic Poisson coefficient
                   Stress where damping mechanisms are activated
        INTEGER CONSTANTS:
         NC.CLE No. of cycles of oscillation PPCYC No. of points per cycle to be used in integration
        CHARACTER STRINGS:
         PILENAME string for filename assignment to a FORTRAN unit number SALP string for material constant ALPA
                    string for material constant A string for Young's modulus E
          Sλ
                    string for limiting strain EPSLNO string for peak strain AMP
         SEO
         SEP
                    string for material constant PT
                    string for overstress power N
                    string for stress where damping mechanisms activate: Y
          SY
          TITLE
                    descriptive title for rua
        VARIABLES:
         ENGABS
                            Energy absorbed per cycle of oscillation
          ENGSTO
                            Energy stored (=.5 * max. strain * max. stress)
          ETA
                             Loss factor
                            Specific damping capacity
       VARIABLE ARRAYS:
         EPSLON(K)
                            Axia strain (index K rep. time)
         STRESS(K)
                            Axia. stress (index K rap. time)
         Z(X)
                            Axial stress passed from INTPUN (index & rep. time)
        SUBROUTINES:
                            Contains the differential egs. (invoked by INTYUN) Integration routine (4th order forward Runge-Kutta) Determines the min. & max. values of an array
          INTFUN
         MIXAM
         STRLEN
                            Counts the number of characters in a string
       FUNCTION SUBPROGRAMS:
         PRP(X)
                            Error function of X
         FACT(K)
                            K factorial
         SGN(V)
                            Signum function of V
C
         UNIT(X)
                            Unit step function of X
C
C-
       IMPLICIT REAL*8 (A-H,O-Z)
       INTEGER NEQ
       REAL+8 DERIV, FLOAT, T, TEND, TOL, Z(20), N
       DIMENSION EPSLON(1001), STRESS(1001)
```

```
CHARACTER*20 FILENAME
CHARACTER*70 TITLE, SY, SE, SN, SALF, SEO, SA, SPT, CEP
         CHPRACTER*(*) SAR1, SAR2, SAR3, SAR4, SAR5, SAR6, SAR7, SARP
PARAMETER (SAR1='00=')
PARAMETER (SAR3='Y=')
PARAMETER (SAR3='E=')
DIDBURDED (SAR3='E=')
         PARAMETER (SAR4='n=')
PARAMETER (SAR5='alfa=')
          PARAMETER (SAR6='a=')
          PARAMETER (SAR7='fT='
          PARAMETER (SARP='eP='
          COMMON/BLOKI/AMP, CHEGA, Y, E, VHEWIH, ALFA, N, EYSINO, A, FT
c
          T a 6.0
          Z(1) = 0.0
         -> Interactive input of filenames for the material data input file
             and for output files.
          WRITE(*,*; 'Enter the name of your input data file.'
          TYTEO
       1 KERD(*,2,YELENAME
       2 PORMAT(A)
       WRITE(*,3)FILENAMZ
3 FORMAT('',3X,A70)
          FORMAT('', 3X, A20)
IF(IFL.EQ.9) THE
             OPEN(IFL, PILE-FILENAME, STATUS-'UNKNOWL')
             OPEN(IFL, FILE=FILENAME, STATUS= 'UNKNOWN')
          ENDIF
          IP (IPL.EC.9) THEN
WRITE(*,*) Enter name for the plot file for STRESS vs. EPSION'
             IPL-10
             G) TO 1
         endir
          If (IFL.EQ.10) THEN
             WRITE(*,*)'Enter name for the summary text file'
             IPL=11
         GO TO 1
ENDIF
          REWIND 09
          REWIND 10
          REWIND 11
       ==> Read input quantities from input file.
          READ(9.5) TITLE
         READ(9, '(A)')SY
READ(9, '(A)')SY
READ(9, '(A)')SN
READ(9, '(A)')SALF
      5 FORMAT(A)
         READ(9, +)E, VNEW
         READ(9,*)Y
READ(9,*)ALFA
         READ(9, *)N
Comession Interactive input of other naterial parameters, strain amplitude,
            and number of cycles of loading to be used in calculations.
        WRITE(*,*)' Enter EPSINO'
READ(5,*)EPSINO'
WRITE(*,*)' Enter character string for EPSINO'
READ(5,'(A)')SEO
#RITE(*,*) Enter A AND FT'
READ(5,';A,FT
WRITE(*,*)' Enter character string for a'
READ(5,'(A)')SA
WRITE(*,*)' Enter character string for fT'
READ(5,'(A)')SFT
WRITE(*,*)' Enter FREQ and AMP'
KFAD(5,')PREQ,AMP
WRITE(*,*)' Enter character string for Peak Str
        WRITE(*,*)' Elter character string for Peak Strain (i.e. AMP)'
READ(5,'(A)')SRP
WRITE(*,*)' Enter Number of Cycles and Number of Points per Cyclo'
READ(5,')NCYCLE, HPPCYC
     >==> Determine length of various character strings for later use.
```

```
CALL STRLEN(SEO, IBSEO, IESEO)
        CALL STRLEN(SEP, IBSEP, IFSEP)
        CALL STRLEN(SY, IBSY, IESY)
        CALL STRLEN(SE, IBSE, IRSE)
        CALL STRLEN(SN, IBSN, IESK
        CALL STRLEN(SALF, IBSALF, IESALF)
        CALL STRLEN(SA, IBSA, LESA)
        CALL STRLEN(SFT, IBSFT, IESFT)
        CALL STRLEN(SAR1, IBSAR1, IESAR1)
        CALL STRLEN(SAR2, IDSAR2, TESAR2)
        CALL STRLEK (SAR3, IBSAR3, IESAR3)
        CALL STRLEN(SAR4, IBSAR4, IESAR4)
        CALL STRLEN(SAR5, IBSAR5, IESAR5)
        CALL STRLEN(SAR6, IBSAR6, IESAR6)
        CALL STRLEN(SAR7, IBSAR7, IESAR7)
        CALL STRLEN(SARP, IRSARP, IESARP)
        ISUM1 = IJSAR1 + I2SE0 + 2 + IESARP + IESEP

ISUM2 = IESAR2 + IESY + 2 + IESAR3 + IESE

ISUM3 = IESAR4 + IESM + 2 + IESAR5 + IESALP

ISUM4 = IFSAR6 + IESA + 2 + IESAR7 + IESPT
Commune> Calculate the quantity Pi=3.14159267..., and other parameters
C
        PI=DACOS(-1.9D00)
C
        OMEGA = 2. PI*FREQ
        VNEWIN = .5 - ALPA*(.5-VNEW)/(1.+ALPA)
NSTEPS = NCYCLE*NPPCYC
        PRINT *, 'NSTEPS=', NSTEPS
PERIOD = 1./PREQ
        DELT - PERIOD/NPFCYC
        PRINT *, ' DELT=', DELT
C====> Set initial conditions.
        STRESS(1) = 0.
        EPSLON(1) = 0.
        WRITE(*,99999)
99999 FORMAT(4X, 'ISTEP', 5X, 'STRAIN', 9X, 'STRESS')
Carry out the numerical integration
        DO 10 ISTEP = 1,NSTEPS
             CALL INTFUN(Z,T, FELT, MEQ)
           STRESS(ISTEP+1) = Z(1)
MPSLON(TSTEP+1) = AMF * DSIH(CMEGA*T)
           WRITE(*,'(3x,16,4(3x,E10.4))') ISTEP, EPSLOX (ISTEP+1), %(1)
    10 CONTINUE
    ===> Compute damping.
        CALL MAXIM(STRESS, NSTEPS, STRMIN, STRMAX)
        ENGABS = 0.
LSTART = HFPCYC/4. + 1
        IEND = ISTART + NPPCYC-I
        DO 50 I=ISTART, IEND
          ENCABS = ENGABS + .5 ' (STRESS(I+1) + STRESS(I)) *
                                                           (EPSLON(1+1) - EPSLON(I))
       CONTINUE
        ENGSTO = .5*STRMAX*AMP
        PTA & ENGABS/(2. PI PENGSTO)
        SDC = ETA+2*PÎ
   write results to output data file (unit 10) and to output
C
          text file (unit, 11).
C
        WRITE(10, '(1x, 2(216.8, '', ''); ')(EPSLON(I), STRESS(I), X=1, LSTEPS)
¢
       ERITE(11, (5x,''0 '',12,'' "'',A,A,2x,A,A ''"')')
       SIGMA, SARZ, SY (IBSY: MSY), SAR3, SE (IBSE: IESE)

WRITE (12, '5x, '2 ',12, '"', A, A, 2x, A, A, '"'')

TSUM3, SAR4, SN (IBSN: IESN), SAR5, SALP (IBSALF: IESALF)

WRITE (11, '5x, '3 '', 12, '' "', A, A, 2x, A, A, '"'')

ISUM4, SAR6, SA (IBSA: IESA), SAR7, SFT (IBSFT: IESPT)

WRITE (11, '5x, ''4 28 "h='', L9.4.2x, ''SDC='', 29.4, ''''')') ETA, SDC

FRINT *, 'LOSS FACTOK=', ETA, 'SDC=', SDC
```

```
100G FORMAT(170)

1001 FORMAT(2A60)

1200 FORMAT('',3X,'1',5X,17)

1201 FORMAT('',3X,'2',5X,17)

1500 FORMAT('',5X,E10.4,5X,E10.4)

1501 FORMAT('',5X,E10.4,5X,E10.4,5X,E10.4)
        STOP
        END
        SURROUTINE DERIV(E,T,ZDOT)
        INTLICIT REAL*8 (A-11,0-2)
        INTEGER NEQ
        REAL®S OMEGA, T. 1(20), TOOT(20), NH, LOADD
        COMMON/BLOK1/AMP, CHEGA, Y. S. VNEWIN, ALFA, HN, EPSLHO, A. PT
C
        EPSLON = AMP * DSIN(DMEGA*T)

EPDOT ~ AMF * (AMEGA * DCOS(OMEGA*T)

LOADD = EPSLON*EPDOT
        DLTAEP - DABS(EPGLON) - SPSLHO
        IF(DIMAEP.LT.O.0) THEN
           BETA=(E*ALPA)*( EPSLON - Z(1)/E +
                      PT*ERF(Y.*(1.+VNEWIN)/3.*A*EPSLON)*UNIT(-LOADD) )
           IF (NR.EQ.1.0) THEN
               ZDCT(1) = E*( EPDOT - 2.*(1.+VHEWIN)/3.*DABS(EPDOT)*
                        (2(1)-BETA)/Y
           ELSE
               ZDOT(1) = E*( EPDOT ~ 2.*(1.+VNEWIN)/3.*DABS(EPDOT)*
(DABS(E(1)-BETA)/Y)**(NN-1)*(Z(1)-BETA)/Y)
           ENDIF
        PLSE
           ZOT(1) = E°EPIXT
        ENDIF
        RETURN
        END
Campage End of UNIAXIAL.FOR
```

EXAMPLE OF AN INPUT FILE:

```
SMA Hysteretic Model with Elasticity Outside e0 855 psi 28.5x106 psi 3 .818 28.5x06 0.35 855. 0.818 3
```

35

APPENDIX C

FORTRAN MAIN PROGRAM (all subroutines and function subprograms that are not specifically recall to the calculations being made here are given in Appendix H):

```
C=====>Program Kame: SHEAR.FOR
     This program will carry out a Runge-Kutta integration on the strass-strain equations of the SMA hysterotic model for SHEAR
         loading. Note that inelastic behavior is supressed beyond GAMMAO.
         Colculated results for the stress-strain response are written
         to user defined output data files where the data is arranged
         in two column with strain in the first column and otress in the
         second. The loading sequence (hysteresis) starts with the first line of the file and proceeds in order to the last line. The resulting data files can be used to plot the curves via GRAPHER, which reads ASCII data file with data arranged in column pairs.
C
    NOMENCLATURE:
Ç.
C
       REAL CONSTANTS:
                  Material constant controlling shape of hysteresis
000000000000000
         ALFA
                  =Ey/(E-Py) where Ey is the inclastic modulus
         AMP
                  Amplitude of strait input
                  Young's modulus
                  Shear modulus
         GAMMAO Strain beyond which inelastic growth is supressed
         FREO
                  Frequency of cyclic strain input
                  Material constant controlling size of hysteresis
         PT
                  Overstress power (controls sharpness of transition to inel.)
         WSWV
                  Poisson's ratio
                  Axial Stress where damping mechanisms are activated Shear Stress where damping mechanisms are activated
       INTEGER CONSTANTS:
         NCYCLE No. of cycles of oscillation NPPCYC Nr. of points per cycle to be used in integration
0000000000000
       CHARACTER STRINGS:
         FILENAME string for filename assignment to a FORTRAN unit number
                   string for material constant ALFA
         SA
                   string for material constant A
         SG
                   string for the shear modulus G
         SG0
                   string for limiting strain GANGIAO
         SGP
                   string for peak strain AMP
         SFT
                   string for material constant 7%
         SN
                   string for overstress pover N
         SYS
                   string for shear stress where damping mechanisms activate: YS
         TITLE
                   descriptive title for run
0000
       VARIABLES:
         ENGABS
                            Energy absorbed per cycle of oscillation
                           Energy stored (=.5 * max. strain * max. stress)
         engeto
         ETA
Ċ
                           Specific damping capacity
c
       VARIABLE APRAYS:
         GAMMA(K)
                           Shear strain (index K rep. time)
         TAU(K)
                            Shear stress (index F rep. time)
000000000
         2(%)
                           Chear stress passed from INTFUN (index K rep. time)
       SUDROUTINES:
                           Contains the differential eqs. (invoked by INTFUN) Integration routine (4th order forward Runge-Kutta.
         CERTY
         INTPUN
         MAXIM
                           Determines the min. & max. values of an array
         STRLEN
                           Counts the number of characters in a string
C
       FUNCTION SUBPROGRAMS:
         ERF(X)
                           Error function of X
C
         FACT(X)
                           R factorial
         SGN(V)
                            Signum function of V
                           Unit step function of X
```

```
C
C
           IMPLICIT REAL*8 (A-H,O-Z)
           INTEGER NEQ
          INTEGER NEQ
REAL*8 DERTV,FLOAT,T,TEND,TOL,Z(20),N
DIMENSION GAMMA(1001),TAU(1001)
CHARACTER*20 FILENAME
CHARACTER*70 TITLE,SYS,SG,SN,SALP,SG0,SGP,SA,SPT
CHARACTER*(*) SAR1,SAR2,SAR3,SAR4,SAR5,SAR6,SAR7,SARP
PARAMETER (SAR1='g0=')
PARAMETER (SAR2='Yg=')
PARAMETER (SAR3='G=')
PARAMETER (SAR4='D=')
PARAMETER (SAR4='D=')
          PARAMETER (SAR3='n=')
PARAMETER (SAR5='alfa=')
PARAMETER (SAR6='a=')
PARAMETER (SAR7='fT=')
PARAMETER (SAR7='gP=')
           COMMON/BLOK1/AMP, OMEGA, YS, E, G, ALFA, N, GAMMAO, A, FT, RAD3
C
           MEO = 1
c
           T = 0.0
           Z(1) = 0.0
C=
          Interactive input of filenames for material data input file, and
               for output files contaning data and text.
           WRITE(*,*)'Enter the name of your input data file.'
          READ(*,2)FILENAME
       2 FORMAT(A)
WRITE(*,3)FILENAME
3 FORMAT('',3X,A20)
           FORMAT(' ',3X,A20)
IF(IFL.EQ.9)THEN
               OPEN(IFL, FILE=FILENAME, STATUS='UNKNOWN')
               OPEN(IFL, FILE=FILENAME, STATUS='UNKNOWN')
           IF (IFL.EQ.9) THEN
WKITE(*,*)'Enter name for the plot file for TAU vs. GAMMA'
               IPL=10
               GO TO 1
           ENDIF
           IP (IPL.EQ.10) THEN
WRITE(*,*)'Enter name for the summary text file'
               TFL=11
               GO TO 1
           ENDIF
           REWIND 09
           REWIND 10
           REWIND 11
C====> Read input quantities from input file.
          READ(9,5)TITLE
READ(9,'(A)')SYS
READ(9,'(A)')SG
READ(9,'(A)')SN
READ(9,'(A)')SALP
        5 PORMAT(A)
C====> Read in uniaxial properties; convert to shear properties later.
           READ(9,*)E, VNEW
           READ(9,*)Y
READ(9,*)ALFA
READ(9,*)N
C====> Interactive input of other material parameters, strain amplitude, c and number of cycles of loading to be used in calculations.
          WRITE(*,*)' Enter GAMMAO'
RZAD(5,*)GAMMAO
WRITE(*,*)' Enter character string for GAMMAO'
READ(5,'(A)')SGO
WRITE(*,*)' Enter A AND FT'
READ(5,*)A,FT
WRITE(*,*)' Enter character string for a'
READ(5,'(A)')SA
WRITE(*,*)' Enter character string for fT'
READ(5,'(A)')SFT
```

```
WRITA(*,*)' Enter PREQ and AMP of shear strain loading'
READ(5,*)PREQ,AMP
WRITE(*,*)' Enter character string for peak shear strain'
READ(5,'(A)')SGP
WRITE(*,*)' Enter Number of Cycles and Number of Points per (yele'
         READ(5,*)NCYCLE, RPPCYC
Commune Daternine length of various character strings for later use.
         CALL STRLEN(SG0, TBSG0, IESG0)
CALL STRLEN(SG9, IBSG2, IESGF)
        CALL STRLER(SGF, HSGF, HSGF)
CALL STRLER(RG, HSG, HSG)
CALL STRLEN(RG, HSG, HSG)
CALL STRLEN(SN, HSM, HSM)
CALL STRLEN(SALF, HSALF, HSALF, HSALF)
         CALL STRLEN(5', IBSA, IESA)
CALL STRLEN(SFT, IBSFT, IESFT)
         CALL STRLEN(SAR1, IBSAR1, IZSAR1)
         CALL STRLEN(SARP, IBSARP, IESARP)
         CALL STRLEN(SAR2, IBSAR2, IESAR2)
         CALL STRLEN(SAR3, IBSAR3, IESAR3)
         CALL STRLEN(SAR4, IBSAR4, IESAR4)
         CALL STRLEN(SAR5, IBSAR5, IESAR5)
CALL STRLEN(SAR6, IBSAR6, IESAR6)
         CALL STRLEN(SAR7, 1BSAR7, 1ESAR7)
c
         ISUM1 = IESARî + IESG0 + 2 + IESARP + IESGP
ISUM2 = IESAR2 + IESY + 2 + IESAR3 + IESE
ISUM3 = IESAR4 + IESN + 2 + IESAR5 + IESALF
ISUM4 = IESAR6 + IESA + 2 + IESAR7 + IESFT
     Example Calculate the quantity Pi=3.14159267..., and other parameters.
         PI-DACOS(-1.0D00)
         RAD3=3.**.5
         G = \Xi/(2.*(1 + VNEW))
YS = Y/RAD3
         OMEGA = 2.*PI*FREQ
PRINT *, PI=',PI, OMEGA=',OMEGA
NSTEPS = NCYCLE*NPPCYC
         PRINT *, 'NSTEPS=', MSTEPS
PERIOD = 1./PREQ
         DELT = PERIOD/NPPCYC
         PRINT *, DELT=', DELT
C====> Set initial conditions
         TAU(1) = 0.
         GAMMA(1) = 0.
C
         WRITZ(*,99999)
99939 FORMAT(4x, 'ISTEP', 5x, 'TIME', 9x, 'Z1', 11x, 'Z2')
Cx
    ~~=>> Carry out the numerical integration
         DO 10 ISTEP = 1. NSTEPS
           CALL INTFUN(Z,T,DELT,NEQ)
TAU(ISTEP+1) @ 2(1)
           Gamma(ISTEP+1) = Amp * DSIN(Omega*T)
WRITE(*, '(3x,16,4(3x,210.4))')ISTEP_GAMMa(ISTEP+1),1(1)
    10 CONTINUÈ
         CALL MARIN(TAU, NSTEPS, TAUMIN, TAUMAX)
         ENGABS = 0.
         ISTART - NPPCYC/4,+1
         IEND = ISTART + HPTCYC-1
         DO 50 I=ISTART, IEND
           ENGABS = ENGABS + .5 * (TAU(I+1) + TAU(I); *
                                                               (GAMMA(I:1) - GAMMA(I))
       CONTINUE
        ENGSTO = .5*TAUMAX*AMP
        ETA = ENGABS/(2.*PI2ENGSTO)
        SDC n ETA+2*PI
Communes Write the results to output data file (unit 10) and to output
           text file (unit 11).
```

```
WRITE(11,'(1X,''1 '',12,'' "'',\,\,\,\,\,\,\,\,\,\,\,\'''')')
             WRITE(11,'(1X,'1',12,''',A,A,2X,A,A,''''')')

| ISUM2,SAR2,SYS(IBSYS:IESYS),SAR3,SG(IBSG:IESG)

| WRITE(11,'(1X,''2'',12,''''',A,A,2X,A,A,''''')')

| ISUM3,SAR4,SN(IBSN:IESN),SAR5,SALF(IBSALF:IESALF)

| WRITE(11,'(1X,''3'',12,''''',A,A,2X,A,A,''''')')

| ISUM4,SAR6,SA(IBSA:IESA),SAR7,STT(IBSFT:IESPT)

| WRITE(11,'(1X,''4' 28 "ETA='',E9.4,2X,''SDC='',E9.4,'''''')')ETA,SDC

| PRINT *,' LOSS FACTOR=',ETA,' SDC=',SDC
C
  1000 FORMAT(A70)
  1001 FORMAT(2A60)

1200 FORMAT('',3X,'1',5X,17)

1201 FORMAT('',3X,'2',5X,17)

1500 FORMAT('',5X,E10.4,5X,E10.4)

1501 FORMAT('',5X,E10.4,5X,E10.4,5X,E10.4)
               STOP
               RND
               SUBROUTINE DERIV(Z,T,ZDOT)
               IMPLICIT REAL*8 (A-H,O-Z)
               INTEGER NEQ
               REAL'S OMEGA, T, E(20), EDDT(20), NN, LOADD
COMMON/BLOK1/AMP, OK'GA, YS, E, G, ALPA, NN, GAMM40, A, FT, RAD3
               GAMMA = AMP * DSIN(CMEGA*T)
GRADCT = AMP * CMEGA * DCOS(OMEGA*T)
PLTAGA = DABS(GAMMA) - GAMMAC
               IF(DLTAGA.LT.0.0)THÉN
                   BZTA=(1./3.)*(ÉFALFA)*( GAMMA - Z(1)/G +
RAD3*FT*ERF(A*GAMMA/RAD3)*UNIT(-GAMMA*GAMDOT) )
                    IF(NN.EQ.1.0)TEEN
                          ZDOT(1) = G*( GAMDOT - DABS(GAMDOT;*(Z(1)-BETA)/YS )
                           \begin{array}{lll} \mathtt{EDOT}(1) & \leftarrow \mathtt{G}^*(& \mathtt{GAMDOT} - \mathtt{DABS}(\mathtt{GAMDOT})^* \\ & (\mathtt{DABS}(\mathtt{Z}(1) - \mathtt{BETA})/\mathtt{YS})^* \cdot (\mathtt{NN} - 1) & (\mathtt{Z}(1) - \mathtt{BETA})/\mathtt{YS} \end{array} ) 
                   ENDIP
               ELSE
                   SDOT(1) - G*GAMDOT
               ENDIF
               RETURN
       ====> SHEAR.FOR
```

EXAMPLE OF AN INPUT FILE:

```
SMA Hysteretic Model for Shear with Elasticity Outside g0 494 psi 10.56x106 psi 3 .818 28.5E05 0.35 853. 0.818
```

APPENDIX D

<u>FORTRAN MAIN PROGRAM</u> (all subroutines and function subprograms that are not specifically related to the calculations being made here are given in Appendix H):

```
Communication Program Name: SDUA.FOR (for Strain Dependent UniAxial response)
    This program is different from UNIAXIAL.FOR in that it
           repeats the cyclic strain application over a specified range
           for a given number of peak strains, and it calculates the loss factor associated with each. Runge-nutts integration will be applied to the stress-strain equations of the axial SMA hysteretic model.
Č
000000000
           Hote that inetastic behavior is supressed beyond EPSLNO.
           Piles will be 'enerated which contain data for the plotting
           of Peak Strain vs. Energy Abrorbed, Peak Strain vz. Loss Pactor, Peak Equivalent Srain vs. Energy Abrorbed, and Peak Equivalent Strain vs. Loss Pactor. Pile Format vill be that of GRAPHER;
           ASCII date is arranged in column pairs. Data is arranged in
           two vertical columns with strain (or equivalent strain) being
           in the first column and loss factor (or energy ebsorbed) being in the second column. A short set of data summarizing the run is written to a user defined text file.
ç
      NOMENCLATURE:
0000
        FEAL CONSTANTS:
                     Material constant controlling shape of hysteresis =Ey/(E-Ey) where Ey is the inelastic modulus Amplitude of strain input
           ALPA
           MP
                     Young's modulus
Strain beyond which inelastic growth is supressed
           EPSINO
EPSPk1
                     Minimum peak strain
           EPSPK2 Maximur peak strain
           PREQ
                     Frequency of cyclic strain input
                     Material constant controlling size of hysteresis
                     Overstress power (controls sharpness of transition to inel.)
           VNEW
                     Poisson's ratio
           VNEWFN Inelatic Poisson coefficient
                     Stress where damping mechanisms are activated
         INTEGER CONSTANTS:
           NCYCLE No. of cycles of oscillation
           NPPCYC No. of points per cycle to be used in integration NINC No. of in rements for the range of peak strain
        CHARACTER STRINGS:
          PILENAME string for filename assignment to a FORTRAN unit number
                      string for material constant ALPA
string for material constant A
                      string for Young's modulus E
string for limiting strain EPSLNO
                       string for material constant PT
           SPT
                       string for overstress power H
                      string for stress where damping mechanisms activate: Y descriptive title for run
           TITLE
VARIABLE ARRAYS:
          ENRGAB(1)
                                Energy absorbed in one cycle (I represents position)
Energy absorbed in one cycle (I represents position)
          ENRGST(I)
                                Axial strain (index K rep. time)
Loss factor (I represents position)
           EPSLON(K)
          ZTA(I)
          PEAKST(I)
                                Peak strain (index I represents position)
          PREOST(I)
                                Peak equivalent strain (index I represents position)
          STRESS (K)
                               Axial stress (index K rep. time)
Axial stress passed from INTPUN (index K rep. time)
          Z(K)
        SUBRCUTINES:
          DERTY
                                Contains the differential eqs. (invoked by INTFUN) Integration routine (4th order forward Runge-Kutta) Determines the min. & max. values of an array
           INTPUN
          MAXIM
          STRLEN
                                Counts the number of characters in a string
        PUNCTION SUBPROGRAMS:
          ERP(X)
                               Error function of X
          PACT(K)
                               K factorial
```

```
Signum function of V Unit step function of X
C
         SGN(V)
         UNIŤ(X)
Ċ
       IMPLICIT REAL*8 (A-H,O-E)
       INTEGER NEQ
       REAL*8 DERIV, FLOAT, T, TEND, Z(20), N
       DIMENSION EPSLON(1001), STRESS(1001),
PEAKST(200), ETA(200), ENRGAB(200), ENRGST(200), PKEQST(200)
       CHARACTER*20 FILENAME
       CHARACTER*70 TITLE,SY,SE,SN,SALP,SEO,SA,SFT
CHARACTER*(*) SAR1,SAR2,SAR3,SAR4,SAR5,SAR6,SAR8
PARAMETER (SAR1='e0=')
PARAMETER (SAR2='Y=')
       PARAMETER (SAR3='E='
       PARAMETER (SAR4='n='
       PARAMETER (SAR5='a-'
       PARAMETER (SAR6='a~'
       PARAMETER (SAR8~'fT=')
       COMMON/BLOK1/AMP, CMEGA, Y, E, VNEW, VNEWIN, EPY, ALFA, N, EPSLNO, A, PT
С
C=
    ===> Interactive input of filenames for the material data input file
C
          and for output files.
       WRITE(*,*)'Enter the name of your input data file.'
       IPL-9
     1 READ(*,2) PILENAME
     2 FORMAT(A)
     WRITE(*,3)FILENAME
3 FORMAT('',3X,A20)
IF(I?L.EC.9)THEN
          OPEN (IFL, FILE=FILENAME, STATUS='UNKNOWN')
       ELSE
          OPEN(IFL, FILE=FILENAME, STATUS='UNKNOWN')
       ENDIF
       IF (IFL.EQ.9) THEN
  WRITE(*,*)'Enter name of plot file for Loss Pac. vs. Peak Str.'
  IFL=10
          GO TO 1
       ENDIF
       IP (IPL.EQ.10) THEN
          WRITE(*,*) 'Enter name of the GRAPHER legend text file'
          IPL=11
          GO TO 1
       ENDIF
       IF (IFL.EQ.11) THYN
WRITE(*,*)'Enter filename for Energy Absorbed vs. Peak Strain.'
          GO TO 1
       IF (IFL.EQ.12) THEN
          WRITE(*,*)'Enter filename for Loss Pactor vs. Peak Eqiv. Strain'
          IFL=13
          GC TO 1
       ENDIY
       IF (IFL.EQ.13; THEN
          WRITE(*,*) Enter filename for Energy Abs. vs. Peak Eqiv. Strain'
          IFL=14
         GO TO 1
       ENDIP
       REWIND 09
       REWIND 10
       REWIND 11
       REWIND 12
       REWIND 13
       REWIND 14
    was Read input quantities from input file,
      READ(9,5)TITLE
RFAD(9,'(A)')SY
READ(9,'(A)')SE
READ(9,'(A)')SN
READ(9,'(A)')SALF
    5 FORHAT(h)
      READ(9,*)E,VNEW
READ(9,*)Y
READ(9,*)ALFA
```

```
READ(9,*)H
                   Interactive imput of other material parameters, strain amplitude, and number of cycles of loading to be used in calculations
              WRITE(*,*)' Enter EPSING'
READ(5,*)EFSINO
WRITE(*,*)' EPSING=',EPSING
WRITE(*,*)' Enter character string for EPSING'
READ(5,'(A)')SEO
WRITE(*,'(IZ,'' SEO=',A)',SEO
WRITE(*,*)' Enter A AND FT'
              WRITE(*,*)' Enter A AND PT'
READ(5,*)A.PT
WRITE(*,*)' An',A,' PT=',F4
WRITE(*,*)' Enter character string for a'
READ(5,'(A)')SA
WRITE(*,'(IX,' SA='',A)')SA
WRITE(*,'(IX,' SA='',A)')SA
WRITE(*,')' Enter character string for fT'
READ(5,'(A)')SPT
WRITE(*,'(IX,' SPT-'',A)')SPT
WRITE(*,')' Enter FREG, EPSDK1. & EPSPK2 (min and max peak str.)'
READ(5,*)FREG.EPSPK1.EPSPK2
             WRITE(*,')' Enter FREG. BESPX1. & EPSPX2 (min and max peak strend(5,*)FREG.EPSPX1. & EPSPX2 (min and max peak strend(5,*)FREG.EPSPX1.ZPSPX2
WRITE(*,*)' FREG.',FREG.' EPSPX1=',EPSPX1,' EPSPX2=',EPSPX2
WRITE(*,*)' Enter No. of Cycles and No. of Points per Cycles'
READ(5,*)HCYCLE,HPPCYC
WRITE(*,*)' HCYCLE-',HCYCLE,' NPPCYC*',HPPCYC
WRITE(*,*)' Enter NINC (No. of increments bet. peak strains)'
RIAD(5,*)EINC
URITE(*,*)' NINC=',NINC
 Comments Doternia le langth of parious character strings for later use.
              CALL STRLEN(SFO, IBSEO, IBSEO)
CALL STRLEN(GY, IBSY, IESY)
CALL STRLEN(SL, IBSE, IESE)
CALL STRLEN(SN, IBSN, IESN)
CALL STRLEN(SN, IBSN, IESN)
              CALL STRLEM(SA, IBSA, IESA)
CALL STRLEM(SPT, IBSAT, IESAT)
CALL STRLEM(SARI, IBSARI, IESARI)
              CALL STRLEY(SAR2, IBSAR2, IESAR2)
CALL STRLEY(SAR3, IBSAR3, IESAR3)
             CALL STRIEN(SAR4, IBSAR4, IBSAR4)
CALL STRIEN(SAR5, IBSAR5, IBSAR5)
CALL STRIEN(SAR6, IBSAR6, IBSAR6)
              CATL STRLEN(SARS, 185ARS, IESARO)
C
              XSUM1 = TESAR1 + TESEC
              ISUM2 = IESAR2 + IESY +2 +IESAR3 + IESE
             ISUM3 = IESAR4 + IESN + 2 + IESAR5 + IESALF
ISUM4 = IESAR6 + IESA + 2 + IESAR8 +IESFT
C====> Calculate the quantity Pi=3.14159267..., and other parameters
             PI=DACOS(-1.0DOG)
             PI=DACTOS(=1,0000)

OPEGA = 2.*P1*FREC

PRINT *,' PI=',PI,' ONEGA=',ONEGA

VNEWIR = .5 - ALFA*(.5-VNEW)/(1.+ALFA)
             NSTEPS = NCYCLE * NPPCYC

PRINT *, ' VNEWIN = ', VNEWIN , ' EPY = ', EPY

EPY = Y/E
            NSTPT1 = MSTEPS + 1
PRINT *,' MSTEPS=',NSTEPS
PERIOD = 1./FREQ
            DELT = PERIOD/NPPCYC
PRINT °, ' DELT=', DELT
EPSINC = (EPSPR2-EPSPR1)/NINC
            ISTART = MPPCYC/4. + 1
IEND = ISTART + MPPCYC-1
     **** Set initial conditions.
            STRESS(1) = 0.
            EPSLON(1) = 0.
     ****> Set up the loop for carrying out integration for each step in peak strain.
            NINCP1 = NINC + 1
            DO 7777 J=1, NINCP1
        EM> Clear the arrays used in the loop marked by 30 at the continue statement
```

```
Reinitialize T and Z(1).
                     DO 10 K=1,NSTPP1
                           EPSLON(K)=0.0
        10
                           STRESS(K)=0.9
C
                     T = 0.0
                     Z(1) - 0.0
C
C===> Update the peak strain
C
                     AMP = EPSPK1 + EPSINC*(J-1)
                     PEAKST(J) = AMP
                      PKEQST(J) = (1+VNEW)*AMP
C
            ==> Carry out the integration for the current peak strain
                      DO 30 ISTEP = 1, NSTEPS
                                CALL INTFUN(Z,T,DELT,NEQ)
                           STRESS(ISTEP+1) = Z(1)
EPSLON(ISTEP+1) = AMP + DSIN(OMEGA=T)
        30
            --> Compute damping for the current peak strain.
                       STRMIN = 0.
                       STRMAX = 0.
                       CALL MAXIM(STRESS, NSTPP1, STRMIN, STRMAX)
                      ENGABS = 0.
C
                      DO 50 I=ISTART, IEND
                           ENGABS = ENGABS + .5 * (STRESS(I+1) + STRESS(I)) *
                                                                                                        (EPSLON(I+1) - EPSLON(I))
      50 CONTINUE
                      ENGSTO = .5*STRMAX*AMP
                       ENRGAB(J) = ENGABS
                      ENRGST(J) = ENGSTO
                      ETA(J) = ENGABS/(2.*PI*ENGSTO)
                      WRITE(*,'(3X,13,3(3X,E10.4))')J,PEAKST(J),ENRGAB(J),ETA(J)
   7777 CONTINUE
                 CALL MAXIM(ETA, NINCP1, ETAMIN, ETAMAX)
C====> Write results to output data file (unit 10, 12, 13, and 14) and to
                      output text file (unit 11).
                WRITE(10, '(1x,2(E16.8,'',''))')(PEAKST(I),ETA(I),I=1,NINCP1)
WRITE(11, '(1x,''0'',I2,''"'',A,A,''"'')')
                > ISUM1, SAR1, SEO (IBSEO: IESEO)
WRITE(11, '(1X, '1', 12, '''', \alpha, \alpha, 2X, \alpha, \
                                      ISUM7, SAR2, SY(IBSY: IESY), SAR3, SE(IBSE: IESE)
1, '(1X, ''2 '', 12, '' '', A, A, 2X, A, A, '''')')
                WRITE(11, '(1X,
                > SAR8,SFT(IBSFT:IESFT)
WRITE(11,'(1X,''4 38 "ETAMAX='',E9.4,2X,''ETAMin='',E9.4,''"'')')
              >ETAMAX, ETAMIN
                %TAMAX, SIAMIN
WRITE(12, '(1X,2(E16.8,'',''))')(PEAKST(I), ENRGAB(I), I=1, NINCP1)
WRITE(13, '(1X,2(E16.8,'',''))')(PERQST(I), ETA(I), I=1, NINCP1)
WRITE(14,'(1X,2(E16.8,'',''))')(PKEQST(I), ENRGAB(I), I=1, NINCP1)
PRINT *,' ETAMAX=', ETAMAX,' ETAMIN=', ETAMIN
   1000 PORMAT(A70)
   1001 FORMAT(2A60)

1200 FORMAT(' ',3X,'1',5X,I7)

1201 FORMAT(' ',3X,'2',5X,I7)

1500 FORMAT(' ',5X,E10.4,5X,E10.4)

1501 FORMAT(' ',5X,E10.4,5X,E10.4,5X,E10.4)
                STOP
                SUBROUTINE DERIV(Z,T,ZDOT)
                IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 OMEGA,T,Z(20),ZDOT(20),NN,LOADD
                COMMON/BLOK1/AMP, OMEGA, Y, È, VNEW, VNEWIN, EPY, ALPA, NN, EPSLNO, A, FT
C
                EPSLON = AMP * DSIN(OMEGA*T)
EPDOT = AMP * OMEGA * DCOS(OMEGA*T)
LOADD = EPSLON * EPDOT
```

```
DLTAEP = DABS(EPSION) - EPSLNO
С
      IF(DLTAEP.LT.0.0)THEN
        IF (DABS(EFSLON).GE.EPY)THEN
DELTA = .5 - DABS(Z(1)/EPSLON)*(.5-VNEW)/E
        ELSE
          DELTA - VNEW
        ENDIP
        BETA=(E*ALFA)*( EPSION - Z(1)/E +
FT*ERF((2.*(1.+DELTA)/3.)*A*EPSION)*UNIT(-LOADD) )
        IF(NN.EQ.1.0) THEN

ZDOT(1) = E*( EPDOT - (2.*(1.+VNEWIN)/3.)*DABS(EPDOT)*

(Z(1)-BETA)/Y )
        ELSE
        ELSE
        ZDOT(1) = E*EPDOT
      endip
      RETURN
      END
  ---->SDUA.FOR
```

EXAMPLE OF AN INPUT FILE:

```
SMA Axial Hysteretic Model with Elasticity Outside e0 855 psi 28.5x106 psi Vnew=.35 3 .818 28.5x06 0.35 855. 0.818 3
```

APPENDIX E

<u>FORTRAN MAIN PROGRAM</u> (all subroutines and function subprograms that are not specifically related to the calculations being made here are given in Appendix H):

```
C======> Program Name: SDSH.FOR (for Strain Dependent SHear response)
     ==> This program is different from UNIAXIAL.FOR in that it
          repeats the cyclic strain application over a specified range
          for a given number of peak strains, and it calculates the loss factor associated with each. Runge-Kutta integration will be applied
          to the stress-strain equations of the SMA hysteretic model.
          Note that inelastic behavior is supressed beyond GAMMAO.
           The applied loading is that of a pure state of shear stress
          We specify a maximum peak strain to be used in the sinusiodal application of shear strain. The resulting curves for stress and
000000000000
          strain will be stored in data arrays and then will be
          used to calculate the loss factor (damping). The data file will also be in a format compatible for plotting with GRAPHER.

ASCII data is arranged in column pairs. Data is arranged in
           two vertical columns with strain (or equivalent strain) being
          in the first column and loss factor (or energy absorbed) being in the second column. A short set of data summarizing the run
          is written to a user defined text file.
C
C
     NOMENCLATURE:
        REAL CONSTANTS:
                   Material constant controlling shape of hysteresis
CCC
                   =Ey/(E-Ey) where Ey is the axial inelastic modulus
Amplitude of strain input
          ALFA
          AMP
Young's modulus
         G Shear modulus {=E/[2(1+VNEW)]}
GAMMAO Strain beyond which inelastic growth is supressed
          GAMPK1
                   Minimum peak strain
          GAMPK2
                   Maximum peak strain
          FREO
                   Prequency of cyclic strain input
          PT
                   Material constant controlling size of hysteresis
          N
                   Overstress power (controls sharpness of transition to inel.)
          VNEW
                   Poisson's ratio
                   Axial stress where damping mechanisms are activated
          YS
                   Shear stress where damping mechanisms are activated
        INTEGER CONSTANTS:
         NCYCLE No. of cycles of oscillation
NPPCYC No. of points per cycle to be used in integration
NINC No. of increments for the range of peak strain
        CHARACTER STRINGS:
         PILENAME string for filename assignment to a FORTRAN unit number
                     string for material constant ALPA
                     string for material constant A
                     string for Young's modulus G
                     string for limiting strain GAMMA0
                     string for material constant PT
          SFT
                     string for overstress power N
          SYS
                     string for shear stress where damping mechanisms activate
                     descriptive title for run
          TITLE
        VARIABLE ARRAYS:
                             Energy absorbed in one cycle (I represents position)
Energy absorbed in one cycle (I represents position)
         ENRGAB(I)
          ENRGST(I)
         GAMMA(K)
                             Shear strain (index K rep. time)
                             Loss factor (I represents position)
Peak strain (index I represents position)
         ZTA(I)
         PEAKST(I)
         PKEQST(I)
                             Peak equivalent strain (index I represents position)
                             Shear stress (index K rep. time)
Shear stress passed from INTFUN (index K rep. time)
         TAU(K)
         Z(K)
        SUBROUTINES:
         DERIV
                             Contains the differential eqs. (invoked by INTFUN)
         THEFTIN
                             Integration routine (4th order forward Runge-Kutta)
Determines the min. & max. values of an array
         MAXTM
                             Counts the number of characters in a string
         STRLEN
```

```
0000000
       FUNCTION SUBPROGRAMS:
                         Error function of X
        ERF(X)
        PACT(K)
                         K factorial
        SGN(V)
                         Signum function of V
        UNIT(X)
                         Unit step function of X
c.
       IMPLICIT REAL*8 (A-H,O-Z)
       INTEGER NEQ
      REAL*8 DERIV, FLOAT, T, TEND, TOL, Z(20), H
      DIMENSION GAMMA(1001), TAU(1001), PEAKST(201), ETA(201), PKEQST(201),
                 ENRGAB(201), ENRGST(201)
       CHARACTER*20 FILENAME
       CHARACTER*70 TITLE, SYS, SG, SN, SALF, SGO, SA, SFT
       CHARACTER*(*) SAR1, SAR2, SAR3, SAR4, SAR5, SAR6, SAR7
      PARAMETER (SAR1='g0=')
PARAMETER (SAR2='Ys=')
       PARAMETER (SAR3='G=')
       PARAMETER (SAR4='n=')
       PARAMETER (SAR5='a=
       PARAMETER (SAR6='a=')
      PARAMETER (SAR7='fT=
       COMMON/BLOK1/AMP, OMEGA, YS, E, G, ALFA, N, GAHMAO, A, FT, RAD3
c
      NEO = 1
      -> Interactve input of filenames for the material data input file
         and for output files.
       WRITE(*,*)'Enter the name of your input data file.'
    1 READ(*,2)FILENAME
    2 FORMAT(A)
    WRITE(*,3)FILENAME
3 FORMAT('',3X,A20)
      IP(IPL.EQ.9) THEN
         OPEN (IFL, PILE=FILENAME, STATUS='UNKNOWN')
         OPEN (IFL, FILE=FILENAME, STATUS='UNKNOWN')
       IF (IFL.EQ.9) THEN
         WRITE(*,*) Enter file name for Loss Factor vs. Peak Strain'
         IPL=10
         GO TO 1
      ENDIP
      IF (IPL.EQ.10) THEN
   WRITE(*,*)'Enter name for the summary file'
         IPL=11
        GO TO 1
      ENDIP
      IF (IFL.EQ.11) THEN
         WRITE(*,*)'Enter filename for energy absorbed vs. peak strain'
         IPL=12
      GO TO 1
ENDIF
      IP (IFL.EQ.12) THEN
         WRITE(*,*) Enter filename for loss factor vs peak equiv. strain'
         IFL=13
        GO TO 1
      ENDIP
      IF (IPL.EQ.13) THEN
        WRITE(*,*)'Enter filename for energy abs. vs peak equiv. strain'
        IPL=14
      GO TO 1
ENDIF
      REWIND 09
      REWIND 10
      REWIND 11
      REWIND 12
      REWIND
      REWIND 14
  ====> Read input quantities from input file.
      READ(9,5)TITLE
      READ(9, '(A)')SYS
READ(9, '(A)')SG
READ(9, '(A)')SN
READ(9, '(A)')SALF
```

```
5 FORMAT(A)
READ(9,*)E,VNEW
READ(9,*)Y
READ(9,*)ALFA
READ(9,*)N
            >> Interactive input of other material parameters, strain amplitude,
                  and number of cycles of loading to be used in calculations.
            WRITE(*,*)' Enter GAMMAO'
READ(5,*)GAMMAO
WRITE(*,*)' GAMMAO
WRITE(*,*)' Znter character string for GAMMAO'
READ(5,'(A)')SGO
WRITE(*,'(1X,''SGO='',A)')SGO
WRITE(*,*)' Enter A AND FT'
READ(5,*)A,FT
WRITE(*,*)' A=',A,' FT=',FT
WRITE(*,*)' Enter character string for a'
READ(5,'(A)')SA
             WRITE(*,*)' Enter GAMMAO'
                               (A)')SA
'(1X,''SA='',A)')SA
')'Enter character
              READ(5, WRITE(*,
            WRITE(*,'(1%,''SA='',A)')SA

WRITE(*,*)' Enter character string for fT

READ(5,'(A)')SFT

WRITE(*,'(1%,''SFT='',A)')SFT

WRITE(*,*)' Inter FREQ, GAMPRE, & GAMPRE (Min & Max Peak Strains)'
READ(5,*)FREQ, GAMPK1, GAMPRE

WRITE(*,*)' FREQ=',FREQ,' GAMPRE=',GAMPRE,' GAMPRE>',GAMPRE

WRITE(*,*)' Enter Number of Cycles and Number of Points per Cycle'
READ(5,*)NCYCLE,NPFCYC

WRITE(*,*)' NCYCLE=',NCYCLE,' NPPCYC=',NPPCYC

WRITE(*,*)' Enter NINC (No. of increments between peak strains)'
READ(5,*)NINC

WRITE(*,*)' NINC='.NINC
              WRITE(*,*)' MINC=', NINC
      ----> Determine length of various character strings for later use.
              CALL STRLEN(SG0, IBSG0, IESG0)
              CALL STRLEN(SYS, IBSYS, IESYS)
CALL STRLEN(SG, IBSG, IESG)
             CALL STRLEN(SH. IBSN, IESN)
CALL STRLEN(SALF, IBSALF, IESALF)
             CALL STRLEM(SALF, IBSALF, IESALF)
CALL STRLEM(SA, IBSA, IESA)
CALL STRLEM(SFT, IBSFT, IESFT)
CALL STRLEM(SAR1, IBSAR1, IESAR1)
CALL STRLEM(SAR2, IBSAR2, TESAR2)
CALL STRLEM(SAR2, IBSAR3, IESAR3)
CALL STRLEM(SAR4, IBSAR3, IESAR3)
CALL STRLEM(SAR4, IBSAR5, IESAR5)
CALL STRLEM(SAR6, IBSAR6, IESAR6)
CALL STRLEM(SAR6, IBSAR6, IESAR6)
C
             ISUM1 = IESAR1 + IESGO
ISUM2 = IESAR2 + 7 ÷IESAR3 + 6
              ISUM3 = IRSAR4 + IESN + 7 + TESAR5 + IESALT
              ISUM4 - IESAR6 + IESA + 2 + IESAR7 + IESFT
     calculate the quantity Pi=3.14159267..., and other parameters
             PI=DACOS(-1.0DG0)
             EAD3 = 3.**.5

G = E/(2.*(1+VNEW))
              YS - Y/RAD3
             OMECA = 2.*PI*FREQ
PRINT *, 'FI=',FI,' OMEGA=',OMEGA
             NSTEPS = NCYCLS*NEPCYC
PRINT *, 'NSTEPS=',NSTEPS
PERIOD = 1./FREQ
             DELT = PERIOD/HPFCYC
             DELGAM = (GAMPR2-GAMPR1)/MINC
ISTART = MPPCYC/4. + 1
LEND = ISTART + MPPCYC-1
Communa Set up the loop for carrying out integration for each step in
С
                  peak strain.
C
             NINCP1 = NINC + 1
DO 7777 J=1,NINCP1
         Clear the arrays for stress, strain, strain rate, and time.
```

```
DC 10 K=1.NSTEPS
                 TAU(K)=0.0
     10
                 GAMMA(E)=0.0
       > Update the peak strain and reinitialize time and 3(1).
             Z(1) = 0.0
AMP = GAMPK' + DELGAM*(J-1)
              PEAKST(J) - AMP
              PFEQST(J) = RAD3*AMP/2.
       ==> Carry cut the integration for the current peak strain
              DO 30 K = 1,ESTEPS
                    CAUL INTFUN(2,7,DELT,NEQ)
                 TAU(K+1) = Z(1)
                 GAMMA(K+1) = AMP * DSIR(UMEGA*T)
     30
              CONTINUÈ
          Compute damping for the current peak strain.
              TAUMIN - 0.0
              TAUMAX = 0.0
           CALL HAXIM(TAU, HSTEPS, TAUMIN, TAUMAX)
C
          ENGABS = 0.
C
          DO 50 I-ISTART, IEND
             ZNGABS = ENGABS + .5 * (TAU(I+1) + TAU(I)) *
                                                                     (GAMMA(I+1) - GAMMA(I))
    50 CONTINUE
          ENGSTO = .5*TAUMAX*AMP
          ENRGAB(J) = EPGABS
ENRGST(J) = ENGSTO
ETA(J) = ENGATS/(2.°PI*ENGSTO)
WRITE(*,'(#X,I3,3(3X,E16.4))')J,PZAKST(J),FPRGAB(J),ETA(J)
  :777 CONTINUE
           CALL MAXIM(ETA, NINCP1, ETAMIN, ETAMAX)
Cassas> Write results to output data file (unit 10, 12, 13, and 14) and to
C
              output text file (unit 11).
C
          WRITE(10, '(1X,2(E16.8,'',''))')(PEAKST(J),ETA(J),J=1,NINCP1)
WRITE(11, '(5X,''0'',12,''"',A,A,''"')')
          | ISUM1, SAR1, SG0(IBSG0:IESG0)
| WRITE(11, '(5X, ''1 '', 12, '' ''', A, P5.1, 2X, A, E6.1, ''"')')
         WRITE(11, '(5x, '1 '.12, '' ', A, P5.1,2x,A, E6.1, ''')')

ISUM2, SAR2, YS, SAR3, G

WRITE(11, '(5x, ''2 '', 12, '' ''', A, A, 2x, A, A, ''''')')

ISUM3, SAR4, SN(IESN: IESN), SAR5, SALF (IBSALF: IESALF)

WRITE(11, '(5x, ''3 '', 12, '' ''', A, A, 2x, A, A, ''''')')

ISUM4, SAR6, SA(IBSA: IESA), SAR7, SFT(IBSFT: IESFT)

WRITE(11, '(5x, ''4 38 ''gMin='', E9.4, 2x, ''gMax='', E9.4, ''''')')

FTARLY PTAMAY
                    ETAMIN, ETAMAX
          WRITE(12, '(1X,2(E16.8,'',''))')(PEARST(J),ENRGAB(J;,J\approx1,NINCP1)
WRITE(13,'(1X,2(E16.8,'',''))')(PEQST(J),ETA(J),J\approx1,NINCP1)
WRITE(14,'(1X,2(E16.8,'',''))')(PEQST(J),ENRGAB(J),J\approx1,NINCP1)
PRIHT *,' MAX. LOSS FACTOR=',ETAMAX
 1000 FORMAT(A75)
 1000 FORMAT(A/0)

1001 FORMAT(2A60)

1200 FORMAT(' ',3X,'1',5X,17)

1201 FORMAT(' ',3X,'2'.5X,17)

1500 FORMAT(' ',5X,E10.4,5X,E10.4)

1501 FORMAT(' ',5X,E10.4,5X,E10.4,5X,E10.4)
          PND
          SUBROUTINE DERIV(3, T, 3DOT)
          IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 ONEGA, T, Z(1), ZDOT(1), HN
          COMMON/BLOX1/AMP, CHEGA, YS, E, G, ALFA, NN, GAMMAO, A, FT, RAD3
C
          Garris - ampodsin(chegaog)
          GANDOT - AMP*OMECA*DCOS(OMEGA*T)
          DLTAGA = DARS(GAMMA) - GAMMAC
          IP(DITAGA.LT.O.O)THEN
```

EXAMPLE OF AN INPUT FILE:

```
84A Shear Hysteretic Model with Elasticity Outside g0 494 psi 10.56x106 psi 3 .818 .88.5E06 0.35 855. 0.818 3
```

50

APPENDIX F

<u>FORTRAN MAIN PROGRAM</u> (all subroutines and function subprograms that are not specifically related to the calculations being made here are given in Appendix H):

```
Camanaman Program Name: BENDR.FOR
       This program will carry out o Runge-Kutta integration on the
stress-strain equations of the SMA hysteretic model.
C
CCC
             Note that inelectic behavior is supressed beyond EPSLNO.
            Note that inelectic behavior is supressed beyond EPELNO. The physical generally is that of a rectangular beam under bending. Flane sections are assumed assumed to remain plane. We begin by specifying a maximum peak strain at the surface. A linear strain distribution is assumed to exist about the neutral axis. The height coordinate (i.e. y) is divided into fine increments and the stress is computed for each of these increments.
Ċ
c
C
             Based on the nonlinear uniaxial Stress distribution, the torque
00000000
             is computed for each time instant. The resulting curves for torque and
             bending angle will be stored in data files and then will be
             used to calculate the loss factor (damping) for that particular peak strain. The peak strain is then incremented and the process is repeated until the final peak strain is used. The results for loss factor vs. strain are then stored in an ASCII data file to be
             used in plotting with GRAPHER; ASCII data is arranged in column pairs.
       HOMENCLATURE:
C
          REAL CONSTANTS:
                        Material constant controlling shape of hystoresis
0000000
            ALFA
                        =Ey/(E-Fy) where Ey is the inelastic modulus
            AMP
                        Amplitude of strain input
                        Young's modulus
            EPSINO Strain beyond which inelastic growth is supressed
            EPSPK1
                       Minimum peak strain
            EPSPK2
                       Maximum peak strain
Prequency of cyclic strain input
Material constant controlling size of hysteresis
            FREQ
C
            HEIGHT Height (or thickness) of beam
C
                        Length of beam
            LEN
CCC
                        Overstress power (controls sharpness of transition to inel.)
            VNEW
                        Poisson's ratio
                       Width (or depth) of Lean
            WIDTH
                        Stress where dauping mechanisms are activated Height coordinate of bear cross-section.
C
c
C
          INTEGER CONSTANTS:
C
            NCYCLE No. of cycles of oscillation
            NPPCYC No. of points per cycle to be used in integration NINC No. of increments for the range of peak strain
C
c
C
          CHARACTER STRINGS:
            FILENAME string for filename assignment to a FORTRAN unit number
                         string for material constant ALFA string for material constant A
string for Young's modulus E
string for limiting strain EPSLNO
                          string for peak surface at ain applied to beam
            SEP
                         string for material constant PT
string for beam height
            SPT
            SHEI
                          string for beam length
            SLEE
                          string for overstress power N
            SN
            SWID
                          string for bear width
                         string for stress where damping mechanisms activate: Y descriptive title for run
            TITLE
         VARIABLE ARRAYS:
                                   Angle of bending curvature (index K represents time)
Energy absorbed in one cycle (I represents position)
Energy absorbed in one cycle (I represent position)
            ANGLE (X)
            ENRGAB(I)
            ENRGST(I)
                                   Axial strain (index I rep. pos in cross-ection, index K rep. time)
            EPSLON(I,K)
                                   Loss factor (I represents position)
Peak strain (index I represents position)
Peak equivalent strain (index I represents position)
            ETA(I)
            PEARST(I)
            PKEOST(I)
                                    Axial stress (Index I rep. pos in cross-section,
            STPECS(I,K)
```

```
00000000000000000
                                                                                                                 index K rep. time)
                                                          End torque acting on beam cross-section (K rep. time)
                   TORQUE(K)
                                                          Axial stress passed from INTPUN (index K rep. time)
                   Z(K)
                SUBROUTINES:
                                                          Contains the differential eqs. (invoked by INTPUN) Integration routine (4th order forward Runge-Kutta) Determines the min. & max. values of an array
                   DERIV
                    INTPUN
                   MAXIM
                                                           Counts the number of characters in a string
                    STRLEN
                FUNCTION SUBPROGRAMS:
                    ERF(X)
                                                          Error function of X
                                                           K factorial
                    PACT(K)
                    SGN(V)
                                                           Signum function of V
                    UNIT(X)
                                                           Unit step function of X
 Ċ.
                IMPLICE REAL*8 (A-H,O-Z) INTEGER NEQ
                REAL*8 DERIV, FLOAT, T, TEND, Z(20), N, LEN
DIMENSION EPSLON(101, 1001),

STRESS(101, 1001), TORQUE(1001), ANGLE(1001),

PROBASS(200), ENGA(200), ENGA(200
                                          YY(101), ETA(200), PEAKST(200), ENGA(200), ENGS(200)
                CHARACTER*20 FILENAME
CHARACTER*70 TITLE
                CHARACTER*70 SY,SE,SN,SALF,SEO,SA,LPT,SLEN,SHEI,SWID,SEP
CHARACTER*(*) SAR1,SARP,SAR2,SAR3,SAP4,SAR5,SAR6,SAR7,SAR8,SAR9,
                                                     SA10
                PARAMETER (SAR1='e0=
                PARAMETER (SARP='eP=')
PARAMETER (SAR2='Y=')
                PARAMETER (SAR3='E='
PARAMETER (SAR4='n='
                PARAMETER (SAR5='alfa=')
PARAMETER (SAR6='a=')
                PARAMETER (SAR7='fT=')
PARAMETER (SAR8='Length=')
                 PARAMETER (SAR9='Height=')
                 PARAMETER (SA10='Width=')
                 COMMON/BLOK1/AMP, OMEGA, Y, E, ALFA, N, EPSLNO, A, FT, RATIO
 С
                 NEQ = 1
 C-
            ==> Interactive input of filenames for the material data input file
                      and for output files.
 C
                 WRITE(*,*)'Enter the name of your input data file.'
                 IPL=9
            1 READ(*,2)FILENAME
            2 FORMAT(A)
            WRITE(*,3)FILENAME
3 FORMAT('',3X,A20)
                 FORMAT('',3X,A20)
IP(IFL.EQ.9)THEN
                      OPEN (IPL, FILE=FILENAME, STATUS='UNKNOWN')
                 ELSE
                      OPEN(IPL, PILE=FILENAME, STATUS='UNKNOWN')
                 ENDIP
                 IF (IPL.EQ.9) THEN
   WRITE(*,*)'Enter name of file for Loss Pact. vs. Peak Strain'
                      IPL=10
                      GO TO 1
                 ENDIP
                 IF (IFL.EQ.10) THEN
                      WRITE(*,*)'Enter name for the summary file'
                      IPL=11
                     GO TO 1
                 ENDIF
                 IF (IFL.EQ.11) THEN
                      WRITE(*,*)'Filename for ENGABS vs. ENGSTO at each peak strain'
                      IFL-12
                      GO TO 1
                 ENDIP
                 REWIND 09
                 REWIND 10
                 REWIND 11
                 REWIND 12
 C====> Read input quantities from input file.
                 READ(9,5)TITLE
```

```
READ(9, '(A)') SY

READ(9, '(A)') SE

READ(9, '(A)') SN

READ(9, '(A)') SALP

READ(9, '(A)') SWID

READ(9, '(A)') SWID

READ(9, '(A)') SHEI
         5 FORMAT(A)
             READ(9,*)E,VNEW
READ(9,*)%
              READ(9, *)ALPA
             READ(9,*)H
READ(9,*)LEN
READ(9,*)WIDTH, EEIGHT
             -> Interactive input of other material parameters, strain amplitude,
                  and number of cycles of loading to be used in calculations.
             WRITZ(*,*)' Enter EPSLNO'
READ(5,*)EPSLNO
WRITE(*,*)' EPSLNO=',EPSLNO
WRITE(*,*)' Enter character string for EP
READ(5,'(A)')SEO
WRITE(*,'(1X,''SEO='',A)')SEO
WRITE(*,*)' Enter A AND FT'
READ(5,*)A,FT
WRITE(*,*)' A=',A,' FT=',FT
WRITE(*,*)' Enter character string for a'
READ(5,'(A)')SA
WRITE(*,'(1X,''SA='',A)')SA
WRITE(*,*)' Enter character string for fT
READ(5,'(A)')SFT
WRITE(*,'(1X,''SFT='',A)')SFT
                                        Enter character string for EPSLNO'
              WRITE(*,*)' Enter character string for fT'
READ(5,'(A)')SFT
WRITE(*,'(1X,''SFT~'',A)')SFT
WRITE(*,*)' Enter Ho. of points on linear strain profile'
             WRITE(*,*)' Enter No. of points on linear strain profile'
READ(5,*)NGRIDP
WRITE(*,*)' NGRIDP=',NGRIDP
WRITE(*,*)' Enter PREQ, EPSPK1 and EPSPK2 (Min, Max Peak Strains)'
READ(5,*)PREQ,EPSPK1,EPSPK2
WRITE(*,*)' PREQ=',PREQ,' ZPSPK1=',ZPSPK1,' EPSPK2=',EPSPK2
WRITE(*,*)' Enter character string for EPSPK2'
READ(5,'(A)')SEP
WRITE(*,*)' SEP='',A)')SEF
WRITE(*,*,' SEP='',A)')SEF
              WRITE(*,*)' Enter Number of Cycles and Number of Points per Cycle'
              READ(5,*)NCYCLE, NPPCYC
              WRITE(*,*)' NCYCLE=',NCYCLE,' NPPCYC"',NPPCYC
WRITE(*,*)' Enter NINC (No. of oncrements between peak strains)'
              READ(5,*)NINC
              WRITE(*,*)' NINC=',NINC
C====> Determine length of various character strings for later use.
              CALL STRLEN(SEO, IBSEO, IESEO)
              CALL STRLEN(SEP, IBSEP, IESEP)
              CALL STRLEN(SY, IBSY, IESY)
              CALL STRLEN(SE, IBSE, IESE)
              CALL STRLEN(SN, IBSN, IESN)
              CALL STRLEN(SALF, IBSALF, IESALF)
              CALL STRLEN(SA, IBSA, IESA)
              CALL STRLEN(SFT, IBSFT, IESFT)
              CALL STRLEN(SLEN, IBSLEN, IESLEN)
              CALL STRLEN(SHEI, IBSHEI, IESHEI)
             CALL STRIEN(SWID, IBSWID, IESWIP)
CALL STRIEN(SAR1, IBSAR1, IESAR1)
CALL STRIEN(SARP, IBSARP, IESARP)
CALL STRIEN(SAR2, IBSAR2, IESAR2)
CALL STRIEN(SAR3, IBSAR3, IESAR3)
             CALL STRLEN(SAR4, IBSAR4, IESAR4)
CALL STRLEN(SAR5, IBSAR5, IESAR5)
             CALL STRLEN(SAR6, IBSAR6, IESAR6)
CALL STRLEN(SAR7, IBSAR7, IESAR7)
CALL STRLEN(SAR8, IBSAR8, IESAR8)
CALL STRLEN(SAR9, IBSAR9, IESAR9)
CALL STRLEN(SAR9, IBSAR9, IESAR9)
CALL STRLEN(SA10, IBSA10, IESA10)
             ISUM1 = IESAR1 + IESEO + 2 + IESARP + IESEP

ISUM2 = IESAR2 + IESY + 2 + IESAR3 + IESE

ISUM3 = IESAR4 + IESN + 2 + IESAR5 + IESALF

ISUM4 = IESAR6 + IESA + 2 + IESAR7 + IESFT
              ISUM5 - IESAR8+IESLEN+2+IESAR9+IESHEI+2+IESA10+IESWID
C====> Calculate the quantity Pi=3.14159267..., and other parameters
```

```
C
       PI=DACOS(-1.0D00)
       PI=DACOS(=1.0000)

OMEGA = 2.*PI*FREQ

PRINT *, 'PI=',PI,' OMEGA=',OMEGA

NSTEPS = NCYCLE*NPPCYC

NSTPP1 = NSTEPS+,

PRINT *, 'NSTEPS=',NSTEPS

PERIOD = 1./FREQ
        DELY - HEIGHT/NGRIDP
        DELT = PERIOD/NPPCYC
        DELEPS = (EPSPK2-ZPSPK1)/NINC
        ISTART = NPPCYC/4. + 1
        IEND = ISTART + NPPCYC-1
C====> Set up radial grid.
       DO 7, I=1,NGRIDP
YY(I) = -(HEIGHT/2.) + DELY*(2.*I - 1.)/2.
       \Longrightarrow Set up the loop for carrying out integration for each st^{p} in peak strain and position in the cross-section.
č
        DO 7777 J=1.NINC+1
      -> Reinitialize T and Z(1). Clear the arrays used in the integration loop.
        T = 0.
        Z(1) = 0.
        DO 9 K=1,NSTPP1
          DO 8 I=1, NGRIDP
             STRESS(I,K) = 0.
             EPSLON(I,K) = 0.
     9 CONTINUE
C====> Update the peak surface strain.
        AMP = EPSPK1+DELEPS*(J-1)
        PEAKST(J) = AMP
C
C====> Carry out the integration at each point in one half of the beam
С
          cross-section for the current surface strain (only one-half of the
C
          cross-section need be considered because of symmetry about the
C
          neutral axis).
        DO 11 I=1,NGRIDP/2
       T = 0.
Z(1) = 0.
       Z(1) = 0.

EPSLON(I,1) = 0.

STRESS(I,1) = 0.

RATIO = YY(I)/(HEIGHT/2.)

DO 10 K = 1,NSTEPS
             CALL INTFUN(Z,T,DELT,NEQ)

EPSLON(I,K+1) = -AMP * DSIN(OMEGA*T) * RATIC
             STRESS(I,K+1) = Z(1)
          CONTINUE
    11 CONTINUE
С
C====> Using symmetry, determine stresses and strains for the other C half of the cross-section
        DO 13 I=NGRIDP/2+1,NGRIDP
          DO 12 K=1,NSTPP1
             EPSLON(I,K) = -EPSLON(NGRIDP-I+1,K)
STRESS(I,K) = -STRESS(NGRIDP-I+1,K)
    13 CONTINUE
    ---> Compute the acting end torque and angle of beam curvature.
        DO 15 K=1, NSTPP1
    15
          TORQUE(K)=0.0
        DO 25 K=1,NSTPP1
          DO 20 I=1,NGRIDP
             TORQUE(K)=TORQUE(K) + (-YY(I))*STRESS(I,K)*DELY
          TORQUE(K) = WIDTH*TORQUE(K)
ANGLE(K) = 2.*LEH*EPSLOH(1,K)/HEIGHT
    25 CONTINUÈ
    ---> Compute damping for the current peak surface strain.
        CALL MAXIM(TORQUE, NSTPP1, TORMIN, TORMAX)
```

```
CALL MAXIM(ANGLE, NSTPP1, ANGMIN, ANGMAX)
          ENGABS = 0.
C
          DO 50 I=ISTART, IEND
             ENGABS = ENGABS + .5 * (TORQUE(I+1) + TORQUE(I)) *
                                                                      (ANGLE(J+1) - ANGLE(I))
   50
          CONTINUE
          ENGSTO = .5*TORMAX*ANGMAX
          ENGA(J) = ENGABS

ENGS(J) = ENGSTO
          ETA(J) = ENGABS/(2.*PI*ENGSTO)
WRITE(*,'(3X,I3,2(3X,E10.4))')J,PEAKST(J),ETA(J)
 7777 CONTINUE
          CALL MAXIM(ETA, NINC, ETAMIN, ETAMAX)
C====> Write results to output data file (unit 10) and to
C
              output text file (unit 11).
          WRITE(10,'(1X,2(E16.8,'',''))')(PEAKST(J),ETA(J),J=1,NINC)
WRITE(12,'(1X,2(E16.8,'',''))')(ENGS(J),ENGA(J),J=1,HINC)
WRITE(11,'(5X,''1'',I2,''''',A,A,2X,A,A,''''')')
         WRITE(11, '(5x,'1 ',12,'...',A,A,2x,A,A,'...'))

ISUM1,SAR1,SEO(IBSEO:IESEO),SARP,SEP(IBSEP:IESEP)

WRITE(11, '(5x,'1 ',12,'...',A,A,2x,A,A,'...'')))

ISUM2,SAR2,SY(IBSY:IESY),SAR3,SE(IBSE:IESE)

WRITE(11, '(5x,'2 ',12,'...',A,A,2x,A,A,'...'')))
         WRITE(J1, (5x, '2 ',12, '',A,A,2x,A,A,''''')

ISUM3,SAR4,SN(IBSN:IESN),SAR5,SALF(IBSALF)

WRITE(11, '5x, ''3 '',12,'' "'',A,A,2x,A,A,''"'')')

ISUM4,SAR6,SA(IBSA:IESA),SAR7,SFT(IBSFT:IESFT)

WRITE(11, '(5x, ''4 '',12, '' "'',A,A,2x,A,A,2x,A,A,''"'')')

ISUM5,SAR8,SLEN(IBSLEN:IESLEN),
                        SAR9, SHEI(IBSHEI: IESHEI),
          > SA10, SWID(IBSWID: IESWID)
WRITE(11, '(5X, ''5 26 "Peak Loss Factor='', E9.3, ''"'') ') ETAMAX
PRINT *.' MAX LOSS PACTOR=' FTAMAX
                           MAX LOSS PACTOR=', ETAMAX
          PRINT *,
 1000 PORMAT(A70)
 1000 FORMAT(A/U)

1001 FORMAT(2A60)

1200 FORMAT(' ',3X,'1',5X,I7)

1201 FORMAT(' ',3X,'2',5X,I7)

1500 FORMAT(' ',5X,E10.4,5X,E10.4)

1501 FORMAT(' ',5X,E10.4,5X,E10.4,5X,E10.4)
          STOP
          SUBROUTINE DERIV(Z,T,ZDOT)
          IMPLICIT REAL*8 (A-H,O-Z)
          INTEGER NEQ
          REAL*8 OMEGA, T, Z(20), ZDOT(20), NN
          COMMON/BLOK1/AMP, OMEGA, Y, È, ALPA, NN, EPSLNO, A. PT, RATIO
C
                 EPSLON = -AMP * DSIN(OMEGA*T) * RATIO
                 EPDOT = -AMP * OMEGA * DCOS(OMEGA*T) * RATIO
                 DLTAEF = DABS(EPSLON) - EPSLNO
          IP(DLTAEP.LT.0.0) THEN
             BETA=(E*ALPA)*( EPSLON - Z(1)/E +
PT*ERP(A*EPSLON)*UNIT(-EPSLON*EPDOT) )
             IF(NN.EQ.i.0)THEN
                  ZDOT(1) = E*( EPDOT -
DABS(EPDOT)*(Z(1)-BETA)/Y )
                  ZDOT(1) = E^{\circ}(EPDOT - DABS(EPDOT)^*
                       (DABS(Z(1)-BETA)/Y)**(NN-1)*
(Z(1)-BETA)/Y)
             ENDIP
         ELSE
             ZDOT(1) - E*EPDOT
         ENDIP
         RETURN
         END
    ====>BENDR.FOR
```

EXAMPLE OF AN INPUT FILE:

SMA Hysteretic Model with Elasticity Outside e0 855 psi

```
28.5x106 psi

3

.818

20 in

1 in

.5 in

28.5x06 0.35

855.

0.818

3

20.

1. .5
```

EXAMPLE OF A BATCH FILE TO RUN BENDR ON THE CODE 281 MICROVAX:

```
set def [.hysteresis] r bendr bendr.inp bendr.dat bendr.txt benrg.dat 1.e-4 1.0e-4 80000. 4.e-5 80000 4.0e-5 20 1.0 .25e-4 1.75e-4 2 100 20
```

56

APPENDIX G

<u>FORTRAN MAIN PRCGRAM</u> (all subroutines and function subprograms that are not specifically related to the calculations being made here are given in Appendix H):

```
=====> Program Name: TORRANGE.FOR
   This program will carry out a Runge-Kutta integration on the stress-strain equations of the SMA hysteretic model.
          Note that inelastic behavior is supressed beyond GAMMAO.
C
          The physical geometry is that of a solid cylinder under torsion.
          Plane stress conditions are assumed (pure shear to be specific).
C
          We begin by specifying a minimum peak strain at the surface.
c
          A linear strain distribution is assumed to exist in the circular
          cross section. The radial coordinate is divided into fine
          increments and the stress is computed for each of these increments. 
Zased on the shear stress distribution, the resulting torque is
0000000
          computed for each time instant. The resulting curves for torque and
          overall sample twist will be stored in data files and then will be
          used to calculate the loss factor (damping) for that particular
          peak strain. The peak strain is then incremented and the process
          is repeated until the final peak strain is used. The results for
C
          loss factor vs. strain are then stored in an output file to be used
C
          in plotting with GRAPHER; ASCII data is arranged in column pairs.
C*
C
C
     NOMENCLATURE:
C
C
       REAL CONSTANTS:
00000000000
                  Material constant controlling shape of hysteresis
         ALPA
                  =Ey/(E-Ey) where Ey is the axial inelastic modulus
Amplitude of strain input
         AMP
         DIA
                  Diameter of shaft
                  Young's modulus
                  Shear modulus {=E/[2(1+VNEW)]}
Strain beyond which inelastic growth is supressed
         GAMMAO
         GAMPK1
                  Minimum peak strain
         GAMPX2
                  Maximum peak strain
         FREO
                  Frequency of cyclic strain input
                  Material constant controlling size of hysteresis
c
         LEN
                  Length of Shaft
                  Overstress power (controls sharpness of transities to inel.)
0000000000000000000000000
         RADIUS Radius of shaft
         VNEW
                  Poisson's ratio
                  Axial stress where damping mechanisms are activated
         VS
                  Shear stress where damping mechanisms are activated
       INTEGER CONSTANTS:
         NCYCLE No. of cycles of ozcillation
         NFPCYC No. of points per cycle to be used in integration NINC No. of increments for the range of peak strain
       CHARACTER STRINGS:
         FILENAME string for filerame assignment to a FORTRAN unit number
         SALP
                   string for material constant LLPA
         SA
                   string for material constant A
                   string for geometric constant DIA string for Young's modulus G
         SDTA
         SG
                   string for limiting atrain GAMMAG
         SGO
         SPT
                   string for material constant FT
                   string for geometric constant LEN
string for overstress power K
         SLEN
         SH
         SYS
                   string for shear stress where damping mechanisms activate
         TITLE
                   descriptive title for run
Ċ
       VARIABLE ARRAYS:
         ANGLE (K)
00000
                           Angle of twist of shaft (index & represents time)
                          Energy absorbed in one cycle (I represents position)
Energy absorbed is one cycle (I represents position)
         ENRGAB(I)
        ENRGST(I)
                           Shear strain (index I rep. position, K rep. time)
         GAMU I,K)
                           Loss factor (I represents position)
         ETA
                          Yeak strain (index I represent) position)
Peak equivalent strain (index I represents position)
         PEAKSI(I)
        PREOST(1)
         TAU(1,K)
                          Shear stress (index I rep. position, % rep. time) Resultant torque acting on shaft
         TORQUE (K)
                           Sheer stress passed from INTIUN (Ladex & rep. time)
         Z(K)
```

```
0000000000
         SUBROUTINES:
                                  Contains the differential eqs. (invoked by INTFUN) Integration routine (4th order forward Runge-Kutta) Determines the min. & max. values of an array
           DERIV
           INTPUN
           MAXIM
                                  Counts the number of characters in a string
           STRLEN
         FUNCTION SUBPROGRAMS:
                                  Error function of X
           ERF(X)
           FACT(K)
                                  K factorial
č
           SGN(V)
                                  Signum function of V
           UNIT(X)
                                  Unit step function of X
č
C.
C
         IMPLICIT REAL*8 (A-H,O-Z)
         INTEGER NEO
         REAL*8 DERIV, FLOAT, T, TEND, TOL, Z (20), N, LEN DIMENSION GAMHA(101,1001), TAU(101,1001), TORQUE(1001), TWIST(1001),
         R(101),ETA(200),PEAKST(200),ENGA(200),ENGS(200)
CHARACTER*20 FILENAME
         CHARACTER*70 TITLE, SYS, SG, SN, SALF, SGO, SA, SFT, SLEN, SDIA, SGP
         CHARACTER*(*) SAR1, SAR2, SG, SN, SALF, SGU, SA, SFT, SLEN, SGDTA, SGP
CHARACTER*(*) SAR1, SAR2, SAR3, SAR4, SAR5, SAR6, SAR7, SAR8, SAR9, SARP
PARAMETER (SAR1='g0=')
PARAMETER (SAR2='Ys=')
PARAMETER (SAR3='G=')
PARAMETER (SAR3='G=')
PARAMETER (SAR3='G=')
         PARAMETER (SAR4='n='
PARAMETER (SAR5='a='
         PARAMETER (SAR6='a=')
PARAMETER (SAR7='fT='
         PARAMETER (SAR8='Length=')
PARAMETER (SAR9='Diameter=')
         COMMON/BLOK1/AMP, OMEGA, YS, E, G, ALFA, N, GAMMAO, A, FT, RAD3, RATIO
C
C
        -> Interactve input of filenames for the material data input file
C=
c
            and for output files.
         WRITE(*,*)'Enter the name of your input data file.'
         IFL~9
         READ(*,2)FILENAME
      2 PORMAT(A)
WRITE(*,3)PILENAME
5 PCRMAT('',3X,A20)
         FCRMAT( ,3X,A20)
IF(TFL.EQ.9)THEN
            OPER(IPL, FILE=FILENAME, STATUS='UNKNOWN')
         ELSE
            OPEN(IFL, FILE=FILENAME, STATUS='UNKNOWN')
         ENDIF
         IF (IPL.EQ.9) THEN
            WRITE(",*)'Enter name of file for Loss Fact. vs. Peak Strain'
            IP? =10
         GO TO 1
ENDIP
         AP (IPL.EQ.10) THEN
            WRITE(*,*)'Enter name for the summary file'
            GO TO 1
         ENDIF
         IF (IFI.EQ.11) THEN
            wRITE(*,*)'Filename for ENGABS and ENGSTO at each peak strain.' IFL=12
            GO TO 1
         STENS
         REWIND 09
         REWIND 10
         REWIND 11
         REWIND 12
C=
      => Read input quantities from input file.
        RAD(9,5)TITLE

READ(9,'(A)')SYS

RELD(9,'(A)')SG

READ(2,'(A)')SN

READ(9,'(A)')SALP

RYAD(9,'(A)')SLEN

READ(9,'(A)')SDIA
```

```
5 FORMAT(A)
READ(9,*)E,VNEW
READ(9,*)Y
READ(9,*)ALFA
READ(9,*)N
READ(9,*)LEN
           READ(9,*)DIA
        ==> Interactive input of other material parameters, strain amplitude,
               and number of cycles of loading to be used in calculations.
          WRITE(*,*)' Enter GAMMAO'
READ(5,*)GAMMAO ',GAMMAO '
WRITE(*,*)' GAMMAO=',GAMMAO
WRITE(*,*)' Enter character string for GAMMAO'
READ(5,'(A)')SGO
WRITE(*,')' Enter A AND FT'
READ(5,*)A,FT
WRITE(*,*)' A=',A,' FT=',FT
WRITE(*,*)' Enter character string for a'
READ(5,'(A)')SA
WRITE(*,*)' Enter character string for a'
READ(5,'(A)')SA
WRITE(*,*)' Enter character string for fT'
READ(5,'(A)')SFT
WRITE(*,*)' Enter character string for fT'
READ(5,'(A)')SFT
WRITE(*,*)' Enter No. of points on linear strain profile'
READ(5,*)NGRIDP
WRITE(*,*)' NGRIDP=',NGRIDP
          READ(5,*)NGRIDP
WRITE(*,*)' NGRIDP=',NGRIDP
WRITE(*,*)' Enter FREQ, GAMPK1 and GAMPK2 (Min, Max Peak Strains)'
READ(5,*)FREQ,GAMPK1,GAMPK2
WRITE(*,*)' FREQ=',FREQ,' GAMPK1=',GAMPX1,' GAMPK2=',GAMPK2
WRITE(*,*)' Enter character string for GAMMAP'
READ(5,'(A)')SGP
WRITE(*,'(1x,''SGP='',A)')SGP
WRITE(*,')' Enter Number of Cycles and Number of Points per Cycle'
READ(5,*)NCYCLE,NPPCYC
WRITE(*,*)' NCYCLE=',NCYCLE,' NPPCYC=',NPPCYC
WRITE(*,*)' Enter NINC (No. of increments between peak strains)'
READ(5,*)NINC
           READ(5,*)NINC
WRITE(*,*)' NINC=',NINC
GAMMAP = GAMPK2
C====> Determine length of various character strings for later use.
           CALL STRLEN(SG0, IBSG0, IESG0)
           CALL STRLEN(SGP, IBSGP, IESGP)
           CALL STRLEN(SYS, IBSYS, IESYS)
           CALL STRLEN(SG, IBSG, IESG)
           CALL STRLEN(SN, IBSN, IESN
           CALL STRLEN(SALF, IBSALF, IESALF)
           CALL STRLEN(SA, IBSA, IESA)
           CALL STRLEN(SFT, IBSFT, IESFT)
           CALL STRLEN(SLEN, IBSLEN, IESLEN)
           CALL STRLEN(SDIA, IBSDIA, IESDIA)
           CALL STRLEN(SAR1, IBSAR1, IESAR1)
           CALL STRLEN(SARP, IBSARP, IESARP)
           CALL STRLEN(SAR2, IBSAR2, IESAR2)
           CALL STRLEN(SAR3, IBSAR3, IESAR3)
           CALL STRLEN(SAR4, IBSAR4, IESAR4)
           CALL STRLEN(SAR5, IBSAR5, IESAR5)
           CALL STRLEN(SAR6, IBSAR6, IESAR6)
CALL STRLEN(SAR7, IBSAR7, IESAR7)
           CALL STRLEN(SAR8, IBSAR8, IESAR8)
           CALL STRLEN(SAR9, IBSAR9, IESAR9)
C
           ISUM1 = IESAR1 + IESG0 +2 + IESARP + IESGP
           ISUM2 = IESAR2 + IESYS '2 + IESAR3 + IESG
           ISUM3 = IESAR4 + IESN + 2 + IESAR5 + IESALP
           ISUM4 = IESAR6 + IESA + 2 + IESAR7 + IESFT
           ISUM5 = IESAR8 + IESLEN + 2 + IESAR9 + IESDIA
      ===> Calculate the quantity Pi=3.14159267..., and other parameters
           PI = DACOS(-1.0D00)
           RAD3 = 3.**.5
           G = E/(2.*(1+VNEW))
           YS = Y/RAD3
           OMEGA = 2.*PI*FREQ
PRINT *,' PI=',PI,' OMEGA=',OMEGA
NSTEPS = NCYCLE*NPPCYC
```

59

0

```
NSTPP1 = NSTEPS+1
PRINT *,' NSTEPS=',NSTEPS
PERIOD = 1./FREQ
RADIUS = DIA/2.
       RADIUS = DIA/2.

DELR = (DIA/2.)/NGRIDP

DELT = PERIOD/NPPCYC

PRINT *, 'DELR=', DELR, 'DELT=', DELT

DELGAM = (GAMPK2-GAMPK1)/NINC

PRINT *, 'DELGAM=', DELGAM

ISTART = NPPCYC/4. + 1
       IEND = ISTART + NPPCYC-1
    ===> Set up radial grid.
       DO 7, I=1,NGRIDP-1
R(I)=DELR*I
       R(NGRIDP)=RADIUS
    ---> Set up the loop for carrying out integration for each step in
         peak strain.
č
       DO 7777 J=1,NINC+1
      Clear the arrays for shear stress and strain.
       DO 9 K=1,NSTPP1
         DO 8 I=1,NGRIDP
            TAU(I,K) = 0.
            GAMMA(I,K) = 0.
     9 CONTINUE
     ==> Update the peak strain and reinitialize time and Z(1).
       T = 0.
       Z(1) = 0.
       AMP = GAMPK1+DELGAM*(J-1)
       PEAKST(J) = AMP
C
C-
   ===> Carry out the integration at each point along the radial
CCC
          coordinate of the circular cross-section, for the current
          surface strain.
       DO 11 I=1,NGRIDP
       T = 0.
       Z(1) = 0.
       GAMMA(I,1) = 0.
TAU(I,1) = 0.
       RATIO = R(I)/RADIUS
DO 10 K = 1,NSTEPS
              CALL INTFUN(Z,T,DELT,NEQ)
            TAU(I,K+1) = Z(1)
            GAMMA(I,K+1) = AMP * DSIN(OMEGA*T) * RATIO
         CONTINUÈ
   10
   11 CONTINUE
C====> Compute the acting torque and angle of twist of the shaft.
       DO 15 K=1,NSTPP1
   15
         TORQUE(K)=0.0
C
       DO 25 K=1,NSTPP1
         DO 20 I=1, NGRIDP-1
   20
              TORQUE(K)=TORQUE(K) + R(I)*TAU(I,K)*2.*PI*R(I)*DELR
         TORQUE(K) = TORQUE(K) + (R(NGRIDP) - DELR/4.) * TAU(NGRIDP, K) *
                                            2.*PI*(R(NGRIDP)-DELR/4.)*DELR/2.
         TWIST(K) = GAMMA(NGRIDP,K)*LEN/RADIÙS
   25 CONTINUE
C=
    ===> Compute damping for the current peak strain.
C
C
       CALL MAXIM(TORQUE, NSTPP1, TORMIN, TORMAX)
       CALL MAXIM(TWIST, NSTPP1, TWIMIN, TWIMAX)
       ENGABS = 0.
C
       DO 50 I=ISTART, IEND
         ENGABS = ENGABS + .5 * (TORQUE(I+1) + TORQUE(I)) *
                                                 (TWIST(I+1) - TWIST(I))
      CONTINUE
  50
       ENGSTO = .5*TORMAX*TWIMAX
```

```
ENGA(J) = ENGABS
  ENGS(J) = ENGSTO

ETA(J) = ENGABS/(2.*PI*ENGSTO)

WRITE(*,'(3X,I3,2(3X,E10.4))')J,PEAKST(J),ETA(J)

7777 CONTINUE
             CALL MAXIM(ETA, NINC, ETAMIN, ETAMAX)
        Write results to output data file (unit 10, 12, 13, and 14) and to output text file (unit 11).
c
            WRITE(10, '(1X,2(E16.8,',''))')(PEAKST(J),ETA(J),J=1,NINC)
WRITE(12,'(1X,2(E16.8,',''))')(ZNGS(J),ENGA(J),J=1,NINC)
WRITE(11,'(5X,'0'',12,'''',A,A,2X,A,A,''''')')
> ISUM1,SAR1,SG0(IBSG0:IESG0),SARP,SGP(IBSGP:IESGP)
WRITE(11,'(5X,''1'',12,'''',A,A,2X,A,A,''''')')
> ISUM2,SAR2,SYS(IBSYS:IESYS),SAR3,SG(IBSG:IESG)
WRITE(11,'(5X,''2'',12,'''',A,A,2X,A,A,''''')')
> TSUM3,SAR4,SN(IBSN:IESN),SAR5,SAIF(IRSALF:IESALF)
            WRITE(11, '(5X, ''2 '', 12, '' "'', A, A, 2X, A, A, ''"'')')

ISUM3, SAR4, SN(IBSN: IESN), SAR5, SALF(IBSALF: IESALF)

WRITE(11, '(5X, ''3 '', 12, '''', A, A, 2X, A, A, ''"'')')

ISUM4, SAR6, SA(IBSA: IESA), SAR7, SPT(IBSPT: IESPT)

WRITE(11, '(5X, ''4 '', 12, ''''', A, A, 2X, A, A, ''''')')

ISUM5, SAR8, SLEN(IBSLEN: IESLEN), SAR9, SDIA(IBSDIA: IESDIA)

WRITE(11, '(5X, ''5 26 "g='', E9.4, 2X, ''SDC='', E9.4, '''''')') ETA, SDC

WRITE(11, '(5X, ''6 32 "Peak Loss Factor='', E9.3, ''''')') ETAMAX

PRINT *, 'MAX LOSS FACTOR=', ETAMAX
                                                                                                                                   ) ') ETA, SDC
  1000 FORMAT(A70)

1001 FORMAT(2A60)

1200 FORMAT(' ',3X,'1',5X,I7)

1201 FORMAT(' ',3X,'2',5X,I7)

1500 FORMAT(' ',5X,E10.4,5X,E10.4)

1501 FORMAT(' ',5X,E10.4,5X,E10.4,5X,E10.4)
             STOP
              END
              SUBROUTINE DERIV(Z,T,ZDOT)
              IMPLICIT REAL*8 (A-H,O-Z)
              INTEGER NEO
             REAL*8 OMEGA, T, Z(20), ZDOT(20), NN
COMMON/BLOK1/AMP, OMEGA, YS, E, G, ALPA, NN, GAMMAO, A, FT, RAD3, RATIO
С
                      GAMMA = AMP * DSIN(OMEGA*T) * RATIO
GAMDOT = AMP * OMEGA * DCOS(OMEGA*T) * RATIO
                      DLTAGA = DABS(GAMMA) - GAMMAO
             IF(DLTAGA.LT.0.0) THEN
                  BETA=(1./3.)*(E*ALPA)*( GAMMA - E(1)/G + RAD3*PT*ERF(A*GAMMA/RAD3)*UNIT(-GAMMA*GAMDOT) )
                  IP(NN.EQ.1.0) THEN
                        ZDOT(1) = G*( CAMDOT - DABS(GAMDOT)*(Z(1)-BETA)/YS )
                  ELSE
                        ZDOT(1) = G*(GAMDOT - DABS(GAMDOT)*
                               (DABS(Z(1)-BETA)/YS)**(NN-1)*
                               (Z(1)-BETA)/YS)
                 ENDIP
             PLSE
                  ZDOT(1) = G*GAMDOT
             ENDIP
             RETURN
             END
        =====>TORRANGE.POR
EXAMPLE OF AN INPUT FILE:
SMA Hysteretic Shear Model with Elasticity Outside g0
494 psi
10.56x106 psi
.818
2 in
 .5 in
  28.5E06 0.35
  855.
  0.818
  2.
```

EXAMPLE OF A BATCH FILE TO RUN TORRANGE ON THE CODE 281 MICROVAX:

set def [.hysteresis] r torrange torrange.inp torrange.dat torrange.txt torrenrg.dat 1.56e-4 1.56e-4 20000. 4.0-5 80000 4.0e-5 40 1.0 .05e-4 2.57e-4 2.57e-4 2 100

APPENDIX H

GENERAL SUBROUTINES AND FUNCTION SUBPROGRAMS USED IN THE FORTRAN PROGRAMS IN APPENDICIES B-G:

```
c title: strlen.for
c author: shw
C
        Turbulence Research Laboratory
        SUNY @ Buffalo
C
C
        trlscott@ubvms
C
C
c function:
        find the first and last character in a string
C
C
c inputs:
        string - character string
c outputs:
        ib - first non-blank character
        ie - last non-blank character
C
c subroutines required:
C
c modifications:
C
•
        subroutine strlen(string, ib, ie)
        character string*(*)
j = len(string)
        do 10 i=j,1,-1
if(string(i:i) .ne. '') goto 20
10
        continue
        ie = 1
ib = 1
        return
20
        ie = i
        do 30 i=1,j
                if(string(i:i) .ne. ' ') goto 40
        continue
40
        ib = i
        return
        end
      SUBROUTINE MAXIM(F, NPOINT, PMIN, FMAX)
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION P(1001)
      PMAX = 0.
PMIN = 0.
      DO 10 I=1,NPOINT-1
        IF(F(I+1).GT.FMAX)THEN
          \dot{P}MAX = \dot{P}(I+1)
        ENDIF
        IF(F(I+1).LT.PMIN)THEN
          PMIN = P(I+1)
        ENDIP
 10 CONTINUE
      RETURN
      END
      REAL*8 FUNCTION UNIT(X)
      REAL*8 X
      IF(X.LT.O.0) THEN
        UNIT=0.0
      ELSE
        UNIT=1.0
      ENDIF
      RETURN
```

END

```
REAL+8 FUNCTION ERF(X)
        IMPLICIT REAL*8 (A-H, C-Z)
        INTEGER K
        PI = DACOS(-1.0D00)
C
        IF(X.GT.3.0D00)THEH
ERF = 1.0D00
GO TO 500
        ELSEIF (X.LT. -3.0D00) THEN
          ERF a -1.0D00
          GO TO 500
        else
          TOL = .0001
          K = 0
          KHAX = 35
          SERIES = 1.
          TMULT = 2.*x/(PI**.5)
   100
          K = K + 2
          IF(K.GT.KHAX)THEN
PRINT *, 'K = KMAX
                                         ERF(',X,')=',ERF
             GO TO 500
          endip
          PRIOR = SERIES
          ODDTRM = (-1)*(DABS(X)**(2.*(K-1)))/(FACT(K-1)*(1+2*(K-1)))
          EVHTRH = ( DABS(K)**(2.*K) )/( FACT(K)*(1+2*K) )

SERIES = SERIES + ODDTRM + EVNTRM

ERF1 = TMULT * PRIOR

ERF2 = TMULT * SERIES
          DELTA = ERF2 - ERF1
ADELTA = ABS(DELTA)
          IF (ADELTA.LE. TOL) THEN
             ERF = ERF2
             GO TO 500
          ELSE
             GO TO 100
          ENDIP
        ENDIP
   500 RETURN
        END
        REAL*8 FUNCTION FACT(K)
        IMPLICIT REAL*8 (A-H,O-Z)
        INTEGER I,K
        IF (K.EQ.O.OR.K.EQ.1) THEN
          FACT = 1.0
          GO TO 20
        ELSE
          FACT = 1.0
          DO 10, I=2, K
             PACT = FACT*I
          CONTINUE
        ENDIF
    20 RETURN
        END
        REAL*8 FUNCTION SGN(V)
        REAL*8 V
        IP(V.LT.O.O) THEN
          SGN=-1.0
        ELSE IF(V.EQ.0.0) THEN
          SGN=0.0
        ELSE
          SGN=1.0
        ENDIP
        RETURN
        END
          SUBROUTINE INTFUN(X, TIME, T, N)
          IMPLICIT REAL*8 (A-H,O-Z)
X - STATE VECTOR
0000
          TIME - RUNNING TIME
T - TIME INTERVAL
N - DIMENSION OF THE STATE VECTOR
```

64

```
DIMENSION X(20),D(20),A(20,5),XB(20)
         DATA KUSE/1/
C
         Initialize
         KINC= 0
         HMIN= 0
         EMAX= 1.E-05
EMIN= 1.2-07
         TIN- TIME
         YOUT= TIN + T
         TIN - PEGINNING OF INTERVAL
         TOUT - END OF THE INTERVAL
         IF(KUSE .NE. 0)H=T
IF(KUSE .EQ. 0)H=ESAVE
         KH= 0
         KUSE- 0
С
         INTEGRATION ALGORITHM BETWEEN 22 AND 19
         DO 101 I=1,N
101
                  XB(I) = X(I)
22
         CALL DERIV(X, TIME, D)
15
         GO TO (100,200,300,400,500),K
         100
11
         TIME= TIN + H/3.00
         X≈ X+1
GO TO 15
200
         DO 12 I-1,H
                  A(I,K)= D(I)*H/3.00
X(I)=XE(I)+0.50*( A(I,1)+A(I,2) )
12
         K=K+1
         GO TO 15
         DO 17 I=1,N
300
                  A(I,K) = D(I) *H/3.60
                  X(I) = XB(I) + (3.0 * A(I,1) + 9.0*A(I,3))/8.00
17
         TIME= TIN + 0.50°E
         X= K+1
GO TO 15
400
         DO 18 I=1,N
                  A(I.K)= D(X)*H/3.00
X(I)=XB(I)+(3.*A(I,1)-9.*A(I,3)+12.*A(I,4))/2.0
18
         TIME= TIN + H
         1+%=%
         GO TO 15
         DO 19 I=1,N
500
                  A(I,K) = D(I)^*H/3.00

X(I) = XB(I) \div .5^*(A(I,2) + 4.*A(I,4) + A(I,5))
19
         COMPUTE THE TRUNCATION ERROR
         INTEGRATION ALGORITHM BETWEEN 22 AND 19
         ERROR= 0.00
         DO 21 I=1,N
                  TE=A(I,1)-\{9.*A(I,3)-8.*A(I,4)+A(I,5)\}/2.00
                  ERROR = DMAX1 (ERROR, DABS(TE))
21
         IF( ERROR .GE. EMAX )GO TO 33
         DO 32 I=1,N
32
                  XB(I) = X(I)
         TIN= TIME
         IF(TIME .EQ. TOUT)GO TO 39
```

```
TREM= TOUT - TIME
IF(TREM .GT. H)GO TO 31
HSAVE= H
              KH= 1
H= TREM
GO TO 22
31
              IF(TREM .LT. (2.00*H))GO TO 22
IF(ERROR .GT. EMIN)GO TO 22
             KINC= KINC+1
IF(KINC .LT. 3)GO TO 22
H= 2.00*H
KINC= 0
GO TO 22
             H= H/2.00
IF(H .LT. HMIN)GO TO 35
TIME= TIN
33
             DO 34 I=1,N
X(I)= XB(I)
34
              GO TO 22
WRITE(*,*)'H IS LT HMIN. TERMINATED.'
GO TO 40
35
              IF(KH .EQ. 1)RETURN
HSAVE= H
RETURN
39
40
              STOP
              END
```

66

INITIAL DISTRIBUTION

Copies		CENTER DISTRIBUTION			
2	NRL		Copies	Code Name	
	Code 6323		1	0112	
	Code 6372		1	0115	
			1	1940	
3	NAVPGSCOL		1	1941	
	Code 69Ps		1	1944	
			1	1945 (RJD)	
7	NAVSEA		1	2742	
	SEA 514		ī	2749	
	SEA 5142		ĩ	28 (Wacker)	
	SEA 5143		1	2801 (Crisci)	
	SEA 5112		1	2801 (Ventriglio)	
	SEA 55N		1	2802 (Morton)	
	SEA 55N2		1	2803 (Cavalaro)	
	SEA 09B31		1	2809 (Malec)	
			5	281 (Holsberg)	
2	DTIC		5	2812	
			10	2812 (CRW)	
			25	2812 (Graesser)	
			1	2813	
			1	2814	
			1	2815	
			1	283 (Singerman)	
			1	284 (Fischer)	
			1	2844	
			1	3421	
			1	3422	

REPORT DOCUM		Form Epproved OMB No. 0704-0188								
Public reporting burden for this collection of information is estimated to everage 1 lists per response, knowing the time for reviewing instruction, searching sticking data sources, gathering and maintaining the data necessity, and completing and reviewing the collection of information, including suggestions for reducing this burden, to Washington Headquerters Services, Directorate for information per large suggestions for reducing this burden, to Washington Headquerters Services, Directorate for information Operations and Reports, 1915 Jefferson Device Highway, Sufficient Project (0704-0189), Washington, DC 20503										
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE July 1991		3. REPORT T	YPE AND	DATES COVERED &E 1/90 - 5/91					
4. TITLE AND SUBTITLE Analysis of Strain Dependent Da Material Point Hysteresis	5. FUNDING NUMBERS Program Element No. 62254N Task No. RS3454									
6. AUTHOR(S) E.J. Graesser C.R. Wong	Work Unit Accession No. DN507603									
7. PERFORMING ORGANIZATION NAME(S) AN David Taylor Research Center Code 2812	8. PERFORMING OPERANIZATION REPORT NUMBER DTRC-SME-91/34									
Bethesda, MD 20084-5000	D1RC-31/12-91/34									
9. SPONSORING/MONITORING AGENCY NAM Office of Naval Technology Arlington, VA 22217-5000	10. SPONSORING/MONITORING AGENCY REPORT NUMBER									
12a. DISTRIBUTION /AVAILABILITY STATEMEN	ग			12b. Dis	STRIBUTION CODE					
A constitutive relationship was used to model the cyclic material response of damping test samples in separate bending and torsion configurations. This was done in order to better understand variations in reported values of damping for materials possessing strain dependent characteristics. The constitutive equations are based on a model of shape memory alloy stress-strain benavior and have been adapted especially for the study of nonlinear hysteresis and the problem of strain dependent damping. Experimental measurements and analytical material response analyses of separate bending and torsion test samples indicated that when the damping of a single nonlinear material is plotted against the one-dimensional local strain of the sample, results are produced which are difficult to compare. However, when the same results are plotted against an invariant measure of three-dimensional distortion the means by which one may compare the data is more straightforward. Also, the approach allows for a quantitative comparison of the damping at a material point to the overall damping. The method can be applied to any homogeneous isotropic nonlinear damping material.										
14 SUBJECT TERMS	15. NUMBER OF PAGES 67									
Damping, Strain Dependence, Nonl	16. PRICE CODE									
17. SECURITY CLASSIFICATION 18. SECURITY OF THIS OF THIS UNCLASSIFIED UNC	CATION	20. LIMITATION OF ABSTRACT								

Standard Form 298 (Rev. 2-89)

NSN /540-01-280-5500